MATHEMATICAL ANALYSIS 3 (NMAI056) summer term 2022/23 lecturer: Martin Klazar

LECTURE 2 (February 22, 2023) OSTROWSKI'S THEOREM. COMPACT METRIC SPACES.

• Ostrowski's theorem. On any field F we have the trivial norm. It is a function $\|\cdot\|$ with $\|0_F\| = 0$ and $\|x\| = 1$ for $x \neq 0_F$.

Exercise 1. Prove that a trivial norm is a norm.

From the usual absolute value of $|\cdot|$ to \mathbb{Q} , \mathbb{R} and \mathbb{C} , we get many other norms by exponentiation.

Exercise 2. Prove that for any c > 0, $|\cdot|^c$ is a norm (on \mathbb{Q} , \mathbb{R} , and \mathbb{C}) if and only if $c \leq 1$. We will call this norm the modified absolute value.

For $\alpha \in \mathbb{Q}$ and a prime p, the canonical p-adic norm $\|\cdot\|_p$ is defined by

$$\|\alpha\|_p := p^{-\operatorname{ord}_p(\alpha)}$$

- in the general *p*-adic norm $|\cdot|_p$ we set c := 1/p.

Exercise 3. Let $M := \{2, 3, 5, 7, 11, ...\} \cup \{\infty\}$ and $\|\cdot\|_{\infty} := |\cdot|$ (ordinary absolute value). Prove for every nonzero number $\alpha \in \mathbb{Q}$ the product formula

$$\prod_{p \in M} \|\alpha\|_p = 1 \; .$$

Exercise 4. Let $\|\cdot\|$ be a nontrivial norm on the field \mathbb{Q} . Prove that $\exists n \in \mathbb{N} \ (n \ge 2 \land ||n|| \ne 1)$.

Exercise 5. Prove that for every two coprime numbers $a, b \in \mathbb{Z}$ there exist numbers $c, d \in \mathbb{Z}$ such that

$$ac+db=1$$
.

Theorem 6 (A. Ostrowski, 1916). Let $\|\cdot\|$ be a norm on the field of rational numbers \mathbb{Q} . Then one of the following three cases occurs.

- 1. It is a trivial norm.
- 2. There exists a real $c \in (0, 1]$ such that $||x|| = |x|^c$.
- 3. There exists a real $c \in (0,1)$ and a prime number p such that $||x|| = |x|_p = c^{\operatorname{ord}_p(x)}$.

Modified absolute values and p-adic norms are therefore the only non-trivial norms on the field of rational numbers.

Proof. Let $\|\cdot\|$ be a nontrivial norm. By Exercise 4, there exists $n \in \mathbb{N} \setminus \{1\}$ such that $\|n\| \neq 1$. We have two cases.

1. There exists an $n \in \mathbb{N}$ such that ||n|| > 1. We denote the smallest such n as n_0 . Apparently $n_0 \geq 2$ a

$$1 \le m < n_0 \Rightarrow ||m|| \le 1.$$
 (1)

There exists a unique real number c > 0 such that

$$|n_0|| = n_0^c . (2)$$

Any $n \in \mathbb{N}$ can be expanded in the base n_0 :

$$n = a_0 + a_1 n_0 + a_2 n_0^2 + \dots + a_s n_0^s$$
 where
 $a_i, s \in \mathbb{N}_0, \ 0 \le a_i < n_0 \text{ and } a_s \ne 0$.

For $n_0 = 10$ we get the standard decimal notation. So

$$|n|| = ||a_0 + a_1 n_0 + a_2 n_0^2 + \dots + a_s n_0^s||$$

$$\Delta \text{-ineq. and multipl. of } || \cdot || \\ \leq \sum_{j=0}^s ||a_j|| \cdot ||n_0||^j$$

$$eq. (1) a (2) \\ \leq \sum_{j=0}^s n_0^{jc} \leq n_0^{sc} \sum_{i=0}^\infty (1/n_0^c)^i$$

$$n_0^{s \leq n} \\ \leq n^c C, \text{ where } C := \sum_{i=0}^\infty (1/n_0^c)^i .$$

Hence

$$\forall n \in \mathbb{N}_0 \left(\|n\| \le Cn^c \right) \,. \tag{3}$$

This inequality actually holds even with C = 1. For each $m, n \in \mathbb{N}$, the multiplicativity of the norm and inequality (3) give

$$||n||^m = ||n^m|| \le C (n^m)^c = C (n^c)^m$$

If we take the *m*-th root, we get $||n|| \leq C^{1/m} n^c$. For $m \to \infty$ we have $C^{1/m} \to 1$. So indeed

$$\forall n \in \mathbb{N}_0 \left(\|n\| \le n^c \right) \,. \tag{4}$$

We similarly derive the converse inequality $||n|| \ge n^c$, $n \in \mathbb{N}_0$. For every $n \in \mathbb{N}$ the above expression of the number n in the base n_0 gives that

$$n_0^{s+1} > n \ge n_0^s$$

By the Δ -inequality we have that

$$||n_0||^{s+1} = ||n_0^{s+1}|| \le ||n|| + ||n_0^{s+1} - n||$$
.

Hence

$$\begin{aligned} \|n\| &\geq \|n_0\|^{s+1} - \|n_0^{s+1} - n\| \stackrel{\text{eq. (2) and (4)}}{\geq} n_0^{(s+1)c} - (n_0^{s+1} - n)^c \\ &\stackrel{n \geq n_0^s}{\geq} n_0^{(s+1)c} (n_0^{s+1} - n_0^s)^c = n_0^{(s+1)c} \left(1 - \left(1 - \frac{1}{n_0}\right)^c\right) \\ &\stackrel{n_0^{s+1} > n}{\geq} n^c C', \text{ where } C' := 1 - \left(1 - \frac{1}{n_0}\right)^c > 0. \end{aligned}$$

The trick with the m-th root gives again

$$\forall n \in \mathbb{N}_0 \left(\|n\| \ge n^c \right)$$

and so

$$orall n \in \mathbb{N}_0\left(\|n\|=n^c
ight)$$
 .

From the multiplicativity of the norm we get that $||x|| = |x|^c$ for any $x \in \mathbb{Q}$. By Exercise 2 $c \in (0, 1]$. Thus case 2 of Ostrowski's theorem holds.

2. The remaining case when for every $n \in \mathbb{N}$ there is an $||n|| \leq 1$ and there exists an $n \in \mathbb{N}$ such that ||n|| < 1. Let n_0 be the smallest such n, again $n_0 \geq 2$. We claim that $n_0 = p$ is a prime number. Indeed, if n_0 had a decomposition $n_0 = n_1 n_2$ with $n_i \in \mathbb{Z}$ and $1 < n_1, n_2 < n_0$, we would get the contradiction

$$1 > ||n_0|| = ||n_1n_2|| = ||n_1|| \cdot ||n_2|| = 1 \cdot 1 = 1,$$

where we used the multiplikativity of the norm and that ||m|| = 1for every $m \in \mathbb{N}$ with $1 \leq m < n_0$. We show that every prime number q with $q \neq p$ has the norm ||q|| = 1. For the contrary, let $q \neq p$ be another prime number with norm ||q|| < 1. We take a large $m \in \mathbb{N}$ such that $||p||^m, ||q||^m < \frac{1}{2}$. By Exercise 5 there are integers a and b such that $aq^m + bp^m = 1$. Taking norms in this equality gives the contradiction:

$$1 = ||1|| = ||aq^{m} + bp^{m}|| \le ||a|| \cdot ||q||^{m} + ||b|| \cdot ||p||^{m} < 1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 1$$

Here we used the triangle inequality, the multiplicativity of the norm, and the fact that now $||a|| \leq 1$ for every $a \in \mathbb{Z}$.

Thus ||q|| = 1 for every prime number q different from p. From this, using multiplicativity of the norm and the decomposition of the non-zero fraction x in the product of powers of prime numbers, we get the expression

$$\begin{aligned} \|x\| &= \left\| \prod_{q=2,3,5,\dots} q^{\operatorname{ord}_q(x)} \right\| = \prod_{q=2,3,5,\dots} \|q\|^{\operatorname{ord}_q(x)} = \|p\|^{\operatorname{ord}_p(x)} \\ &= c^{\operatorname{ord}_p(x)}, \text{ where } c := \|p\| \in (0,1) . \end{aligned}$$

Also $||0|| = c^{\operatorname{ord}_p(0)} = c^{\infty} = 0$. We are in case 3 of Ostrowski's theorem.

The preceding proof is taken from the book

N. Koblitz, *p-adic Numbers*, *p-adic Analysis*, and Zeta-Functions, Springer-Verlag, New York, 1984.

The book contains a lot of interesting information about the *p*-adic norm $\|\cdot\|_p$ and related *p*-adic analysis.

• Compactness of sets in MSs. First, we introduce limits of sequences in MSs. Let (M, d) be a MS, $(a_n) \subset M$ be a sequence of points in it and $a \in M$ be a point. We say that (a_n) has the limit a (in (M, d)) if

$$\forall \varepsilon \exists n_0 (n \ge n_0 \Rightarrow d(a_n, a) < \varepsilon) .$$

From now on $\varepsilon > 0$ is a real number and $n_0, n \in \mathbb{N}$. We write that lim $a_n = a$ or $\lim_{n\to\infty} a_n = a$. If the sequence (a_n) has a limit, we say that it is *convergent*, otherwise it is *divergent*.

Let (M, d) be a MS and $X \subset M$, for example X = M. We say that the set X is *compact* if

$$\forall (a_n) \subset X \exists (a_{m_n}) \exists a \in X \left(\lim_{n \to \infty} a_{m_n} = a \right).$$

In words: every sequence of points in the set X has a convergent subsequence with limit in X. The MS (M, d) is compact when the set M is compact.

The Bolzano–Weierstrass theorem states that on the real axis, i.e., in the MS $(\mathbb{R}, |x - y|)$, every closed and bounded interval X = [a, b] is a compact set. We will give a few examples of compact sets and compact MSs.

Exercise 7. In every MS every finite set is compact.

Exercise 8. Is the real axis (with the metric |x-y|) a compact MS?

Exercise 9. Which other intervals on the real axis besides [a, b] are compact sets?

Exercise 10. Let $X = [a, b] \times [c, d]$ be a rectangle in the plane, that is, in the Euclidean space (\mathbb{R}^2, e_2) . Prove that X is a compact set.

Exercise 11. Let (M, d) be MS, $A, B \subset M$ and let us briefly write "is c." instead of "is a compact set". Determine which of

the following implications holds

A and B are
$$c. \Rightarrow A \cup B$$
 is c.
A and B are $c. \Rightarrow A \cap B$ is c.
 $A \subset B$ and B is $c. \Rightarrow A$ is c.
A and B are $c. \Rightarrow A \setminus B$ is c.

• We extend the maximum principle from the real axis to general MSs. But first we need to introduce continuous maps between MSs. Let (M, d) and (N, e) be MSs and $f: M \to N$ be a map between them. We say that it is continuous at $a \in M$ if

$$\forall \varepsilon \exists \delta \forall x \in M \left(d(x, a) < \delta \Rightarrow e(f(x), f(a)) < \varepsilon \right) .$$

Here $\delta > 0$ is a real number. A map f is continuous if it is continuous at every point $a \in M$.

Exercise 12. Let $f: M \to N$ be a map between MSs and $a \in M$ be a point. Prove Heine's definition of continuity, that is, prove the equivalence

 $f \text{ is continuous at } a \iff \\ \iff \forall (a_n) \subset M (\lim a_n = a \Rightarrow \lim f(a_n) = f(a)).$

Theorem 13 (attaining extrema). Let (M, d) be a MS,

$$f\colon M\to\mathbb{R}$$

be a continuous function from M to the real axis, and $X \subset M$ be a nonempty compact set. Then

$$\exists a, b \in X \ \forall x \in X \left(f(a) \le f(x) \le f(b) \right) \,.$$

Thus the function f attains on the set X its smallest value f(a)and its largest value f(b). **Proof.** First we show that the image $f[X] = \{f(x) \mid x \in X\}$ is a bounded subset of \mathbb{R} . If the set f[X] were not bounded from above, we could take a sequence $(a_n) \subset X$ with $\lim f(a_n) = +\infty$, i.e., such that $\forall c \exists n_0 (n \ge n_0 \Rightarrow f(a_n) > c)$. By the assumption, (a_n) has a convergent subsequence (a_{m_n}) with $\lim a_{m_n} = a \in X$. By the continuity of f at a and Exercise 12, $\lim f(a_{m_n}) = f(a) \in \mathbb{R}$. But this is a contradiction because $\lim f(a_{m_n}) = +\infty$. Boundedness of f[X] from below can be proved similarly.

So we can define the real numbers $A := \inf(f[X])$ and $B := \sup(f[X])$. By the definition of infimum, there exists a sequence $(a_n) \subset X$ such that $\lim f(a_n) = A$. By the assumption, (a_n) has a convergent subsequence (a_{m_n}) with $\lim a_{m_n} = a \in X$. By the continuity of f at a and Exercise 12, $\lim f(a_{m_n}) = f(a)$. At the same time, however, since subsequences preserve limits, $\lim f(a_{m_n}) = A$. Thus f(a) = A and for every $x \in X$,

$$f(a) = A \le f(x)$$

because A is the infimum of the set f[X]. Similarly, we find $b \in X$ such that f(b) = B, and similarly $f(b) = B \ge f(x)$ for every $x \in X$.

• Products of MSs. For the MSs (M, d) and (N, e), we define their product $(M \times N, d \times e)$ so that $M \times N$ is the Cartesian product of the sets M and N and the $d \times e$ metric on it is given by

$$(d \times e)((a_1, a_2), (b_1, b_2)) := \sqrt{d(a_1, b_1)^2 + e(a_2, b_2)^2}$$
.

Exercise 14. Prove that the product of two MSs is a MS.

Exercise 15. Prove that the product of two Euclidean MSs

$$(\mathbb{R}^m, e_m)$$
 and (\mathbb{R}^n, e_n)

is (except for a formality in notation) the Euclidean MS

 $(\mathbb{R}^{m+n}, e_{m+n})$.

What is the "formality"?

• Characterization of compact sets in Euclidean MSs. We defined the ball B(a, r) in a MS last time. A set $X \subset M$ in a MS (M, d) is open if

$$\forall a \in X \exists r (B(a, r) \subset X) .$$

Here r > 0 is a real number, the radius of the ball B(a, r). X is closed if $M \setminus X$ is open. X is bounded if

$$\exists a \in M \exists r (X \subset B(a, r)).$$

The diameter of the set X is, for $V := \{d(a, b) \mid a, b \in X\} \subset [0, +\infty)$, defined as

 $\operatorname{diam}(X) := \begin{cases} \sup(V) & \dots & \text{the set } V \text{ is bounded from above and} \\ +\infty & \dots & \text{the set } V \text{ is unbounded from above .} \end{cases}$

Exercise 16. Prove that any set X is bounded if and only if $\operatorname{diam}(X) < +\infty$.

Exercise 17. Prove that for any unbounded set X there is a sequence $(a_n) \subset X$ such that $m < n \Rightarrow d(a_m, a_n) > 1$.

In the following two exercises we review basic properties of open and closed sets in a MS.

Exercise 18. Let (M, d) be a MS. Then the following holds.

1. The sets \emptyset and M are both open and closed.

- 2. Any finite intersection of open subsets of M is an open set and any finite union of closed subsets of M is a closed set.
- 3. Any union of open subsets of M is an open set and any intersection of closed subsets of M is a closed set.

Exercise 19. Let (M, d) be a MS and $X \subset M$. Then

the set X is closed \iff $\iff \forall (a_n) \subset X \forall a \in M (\lim a_n = a \Rightarrow a \in X).$

Theorem 20 (on compactness). The following holds.

- 1. If $X \subset M$ is a compact set in a MS (M, d), then X is closed and bounded. The opposite implication does not in general hold, by Exercise 22.
- 2. If (M, d) and (N, e) are two compact MSs, then their product $(M \times N, d \times e)$ is a compact MS.

Proof. 1. If X is not closed, then by Exercise 19 there exists a convergent sequence $(a_n) \subset X$ such that $\lim a_n = a \in M \setminus X$. This sequence does not have a convergent subsequence with limit in X, since each subsequence has limit a. When X is not bounded, we easily construct a sequence $(a_n) \subset X$ such that $m < n \Rightarrow$ $d(a_m, a_n) > 1$ (Exercise 17). This sequence clearly has no convergent subsequence.

2. Let $(a_n) = ((a_{n,1}, a_{n,2}))$ be a sequence in the product MS. We choose a subsequence (b_n) such that $(b_{n,1})$ has a limit $b \in M$ in (M, d). From (b_n) we select a subsequence (c_n) such that $(c_{n,2})$ has a limit $c \in N$ in (N, e). It is not difficult to see that (c_n) is a subsequence of the sequence (a_n) and that it has in the product MS the limit

$$\lim c_n = (b, c) \in M \times N .$$

Exercise 21. Let (M, d) be a compact MS and $X \subset M$ be a closed set. Prove that X is compact.

Exercise 22. Let M be an infinite set and the metric d on it is given as d(a, b) = 1 for $a \neq b$ and d(a, a) = 0. Show that (M, d) is a MS that is bounded and closed but not compact.

Theorem 23 (compact sets in \mathbb{R}^n). In every Euclidean MS $(\mathbb{R}^n, e_n), X \subset \mathbb{R}^n$ is compact if and only if it is bounded and closed.

Proof. By the first part of the previous theorem, it suffices to prove that every bounded and closed set $X \subset \mathbb{R}^n$ is compact. From its boundedness it follows that for a real number a > 0,

$$X \subset K := [-a, a]^n = [-a, a] \times [-a, a] \times \dots \times [-a, a] \subset \mathbb{R}^n$$

The Euclidean MS (K, e_n) is compact by the Bolzano–Weierstrass theorem, part 2 of the previous theorem, and Exercise 15. Clearly, X is also closed in (K, e_n) (problem 24), so according to Exercise 21, X is compact in (K, e_n) and therefore in (\mathbb{R}^n, e_n) (Exercise 25). \Box

Exercise 24. Let (M, d) be a MS, $A \subset B \subset M$ and A be a closed set in $(M, d) \Rightarrow A$ is closed also in the subspace (B, d).

Exercise 25. Let (M, d) be a MS and $A \subset B \subset M$. Then A is compact in $(M, d) \iff A$ is compact in the subspace (B, d).

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to Mgr. J. Rondoš, Ph.D. by the end of the coming Monday by e-mail (jakub.rondos@gmail.com) solutions to the Exercises 5, 9, 11, 17 and 22.