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LECTURE 14 (May 21, 2025) SOME PARTICULAR

DIFFERENTIAL EQUATIONS

• Newton’s law of force. Differential equations (DE), relations be-

tween values of derivatives of the unknown function, are basic tools

in mathematical models in physics, technology, biology, economics,

etc. A basic example is Newton’s law of force

mx′′ = F ,

where x = x(t) ∈ R is the position at time t of a particle of mass m

exposed to the force F (we consider only the simple one-dimensional

case). More generally, the force can be a function of time, position of

the particle and velocity: F = F (t, x, x′). In the simplest situation

F is constant, or slightly more generally F depends only on t— then

x(t) =
∫ ∫

F . This is the case, for example, in Earth’s gravitational

field which does not change in time and (for small scales) does not

depend on the position of the particle and certainly not on its speed,

which are all idealizations (especially the independence on x). The

Equation of Free Fall is then

mx′′ = −mg ,

where g is the gravitational acceleration constant. All its solutions

are exactly the functions

X := {x(t) = −1
2gt

2 + c1t + c2 | c1, c2 ∈ R} ,
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where c1 and c2 are arbitrary constants. These express the fact that

the movement of the falling particle is determined uniquely by its

initial position x(t0) and velocity x′(t0) at some time instant t0.

Exercise 1 Prove that the solutions of The Free Fall Equation

are precisely the functions in X. Can we determine the move-

ment of the particle uniquely by the position x(t0) and velocity

x′(t1) at different times t0 and t1?

• As a second example of DE we present The Radioactive Decay

Equation
dR

dt
= −kR .

It describes the evolution of the quantity R = R(t) of decaying

radioactive material in time t, where k is the material constant. It

is clear that each function

R = R(t) = c exp(−kt) ,

where c is a constant, is a solution to this equation.

DE branch in ordinary differential equations (ODE) which in-

volve functions of just one variable, and partial differential equati-

ons (PDE) involving functions of several variables and their partial

derivatives. Both previous equations are ODE. In the last and this

lecture, we limit ourselves to ODE.

• Before we completely leave PDE, we mention for the sake of

interest three important examples: Laplace’s Equation (or The

Equation of Potential)

u = u(x, y) :
∂2u

∂x2
+
∂2u

∂y2
= 0 ,
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The Diffusion Equation (or The Equation of Heat Conduction)

u = u(x, t) : α2 · ∂
2u

∂x2
=
∂u

∂t

a The Wave Equation

u = u(x, t) : a2 · ∂
2u

∂x2
=
∂2u

∂t2
,

where α and a are constants. Physical meaning of these equations

is apparent from their names.

• The general form of an ODE for the unknown function y = y(x)

is (n ∈ N)

F (x, y, y′, y′′, . . . , y(n)) = 0 ,

where F is a function in n+2 variables. The order of the equation is

the highest order of derivative occurring in the equation. The above

equation for the free fall is a second-order (ordinary differential)

equation, while the radioactive decay equation is first-order.

A differential equation of the form (n ∈ N)

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = b(x)

where ai(x) and b(x) are given functions and y = y(x) is an unk-

nown function, is the linear differential equation (of order n

and with right side b(x)). For b(x) = 0 we speak of the homo-

geneous linear differential equation.

Differential equations that are not of this form (and therefore

depend on some variables for the unknown function and its de-

rivatives non-linearly), are nonlinear differential equations. For

example The Pendulum Equation

θ′′ + (g/l) sin θ = 0 ,
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which describes the motion of a pendulum of length l swinging in a

homogeneous gravitational field (g is the constant of gravitational

acceleration) — the angle θ = θ(t) is the deviation of the pendulum

from the vertical at time t— is nonlinear. For small angles θ it

holds that sin θ ≈ θ and we can solve the linear approximation of

the pendulum equation θ′′+(g/l)θ = 0, which is a linear ODE. The

equation of free fall and the radioactive decay equation is linear.

Exercise 2 Try to guess some solution to the equation

θ′′ + (g/l)θ = 0 .

• Algebraic differential equations. Differential equation (again

n ∈ N)

F (x, y, y′, y′′, . . . , y(n)) = 0 ,

in which F is a polynomial in n + 2 variables, are algebraic diffe-

rential equations (with the abbreviation ADE). Since the lecturer

was and is interested in these equations, we now present (without

proof) for the sake of interest three results about ADE. For the

first of them, we recall that the (Euler’s gamma) function Γ(z) is

defined for complex z with re(z) > 0 by the integral

Γ(z) :=

∫ +∞

0

tz−1e−t dt .

Exercise 3 Show that for every z ∈ C s re(z) > 0 this integral

converges. The integrand needs to be estimated both at 0 and at

+∞.

Exercise 4 Compute that Γ(1) = 1 and prove that Γ(z) satisfies

the functional equation

Γ(z + 1) = zΓ(z) .
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Hint: integration by parts.

Thus Γ(n + 1) = n! for every n ∈ N0 and we see that the gamma

function extends the factorial function. O. Hölder proved by means

of the above functional equation the following theorem.

Theorem 5 (O. Hölder, 1887) The gamma function does not

satisfy any nontrivial ADE, for any nonzero complex polyno-

mial F with n + 2 variables.

To state another result about ADE we define in the complex unit

circle |z| < 1 the functions

ϑ(z) :=

∞∑
n=0

zn
2

and P (z) =

∞∑
n=0

p(n)zn :=

∞∏
n=1

1

1− zn
.

Exercise 6 Prove that the coefficients in the last power series

are natural numbers, so p(n) ∈ N for every n ∈ N0, and that

p(n) is the number of partitions of the number n, the number

of representations of n as a sum of natural numbers. Sums

that differ only in the order of summands are not considered

as different.

Theorem 7 (positively about ADE) Both ϑ(z) and P (z) sa-

tisfy a non-trivial (and quite complicated) ADE.

Finally, we preface the third result about ADE by mentioning

that differential equations can be considered besides the domain of

functions also in the domain of formal power series, which may have

zero radius of convergence and do not define any function.
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Exercise 8 Consider the formal power series

M(x) :=

∞∑
n=0

n! · xn = 1 + x + 2x2 + 6x3 + 24x4 + . . . .

Derive a non-trivial ADE, actually a first-order linear DE that

M(x) satisfies.

We now define another formal power series

B(x) =

∞∑
n=0

Bnx
n :=

∞∑
k=0

xk

(1− x)(1− 2x) . . . (1− kx)
= 1 + . . . .

Next, we define for k ∈ N
∞∑
n=1

S(n, k)xn :=
xk

(1− x)(1− 2x) . . . (1− kx)
.

It is clear that always S(n, k) ∈ N0. These numbers are called

Stirling numbers (of the second kind).

Exercise 9 Prove that for k, n ∈ N the number S(n, k) is

exactly the number of set partitions (disjoint unions of no-

nempty sets) of any n-element set in k blocks. Hint: the co-

efficient at xn in the expansion of the rational function

xk

(1− x)(1− 2x) . . . (1− kx)

counts words u of length n over the alphabet [k] := {1, 2, . . . , k}
with the properties that (i) every i ∈ [k] occurs in u and (ii) for

each i, j ∈ [k] with i < j the first occurrence of i in u precedes

the first occurrence of j.
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The above coefficients Bn thus express in terms of the Stirling num-

bers as

Bn =

n∑
k=1

S(n, k)

and Bn is the number of all set partitions of an n-element set. Bn

are so-called Bell numbers.

Theorem 10 (M. Klazar, 2003) The formal power series

B(x) =

∞∑
n=0

Bnx
n ,

that is, the ordinary generating function of Bell numbers, does

not satisfy any non-trivial ADE.

The proof method is similar to Hölder’s theorem. One proves that

no non-trivial ADE is compatible with the following functional

equation for B(x).

Exercise 11 Using the above definition of the power series

B(x), prove that

B(x) = 1 +
x

1− x
·B(x/(1− x)) .

Exercise 12 Derive a nontrivial ADE for the exponential ge-

nerating function of Bell numbers, which is
∞∑
n=0

Bnx
n

n!
= ee

x−1 .

• ODE with separated variables is a general first-order nonlinear

differential equation of the form

y(a) = b ∧ y′ = f (x) · g(y) (SEP)
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for the unknown function y = y(x) with the prescribed value y(a) =

b (a, b ∈ R), where f (x), resp. g(y), is a function defined and

continuous on some open interval I 3 a, resp. J 3 b, and g 6= 0

on J . We now locally uniquely solve this type of equation by the

function y : I ′ → J , for some open interval I ′ satisfying a ∈ I ′ ⊂ I .

We will see that the solution is expressed (but only implicitly) using

indefinite integrals of the functions 1/g and f .

We transform the equation in the form

y′

g(y)
= f (x)

and rewrite it using a fixed function G :=
∫

1/g (a primitive

function to 1/g on the interval J) as

∀x ∈ I ′
(
G(y(x))′ = f (x)

)
.

So we have the equation

∀x ∈ I ′
(
G(y(x)) = F (x) + c

)
,

where F :=
∫
f is a given function, primitive to the function f on

the interval I , and c is an (integration) constant. The solution y(x)

of the original equation (SEP) is thus given as an implicit function

by the relation

∀x ∈ I ′
(
G(y(x)) = F (x) + c︸ ︷︷ ︸

(∗)

)
, G =

∫
1

g
and F =

∫
F .

The constant c is determined by the relation G(b) = F (a) + c.

It follows from the implicit function theorem that there exists an

open interval I ′ with a ∈ I ′ ⊂ I and a uniquely determined function

y : I ′ → J such that y(a) = b and on I ′ the relation (∗) holds. So

we have on I ′ a unique solution to the equation (SEP).
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Exercise 13 Explain the use of the implicit function theorem

in this situation (for example, why its assumptions are met).

But why is the solution of the equation (SEP) locally unique,

when the primitive functions G and F are far from unique?

Exercise 14 Does not the local uniqueness of the solution of

the equation (SEP) follow from Picard’s theorem?

• Linear ODE of the 1st order. We should be able to solve any

linear differential equation of the 1st order, and this will conclude

our course. It is an equation of the form (x0, y0 ∈ R)

y(x0) = y0 ∧ y′ + a(x)y = b(x) , (LIN)

where y = y(x) is an unknown function and the functions a(x)

and b(x) are given, defined and continuous on some open interval

I 3 x0.

Exercise 15 Does not the local uniqueness and existence of the

solution to the equation (LIN) follow from Picard’s theorem?

Well, it does, so all we have to do is to solve the equation (that is,

to express its solution in terms of the coefficients a and b by means

of known functions and known operations). First we find a function

c = c(x), so-called integration factor, such that

c · (y′ + ay) = (cy)′ .

Then cy′+acy = cy′+ c′y and c must satisfy the equation ac = c′,

i.e. (log c)′ = a. The function c = eA, where A =
∫
a, has the

required property. We multiply the initial linear equation by the

integration factor and get that

(cy)′ = c(y′ + ay) = cb︸ ︷︷ ︸
c · (LIN)

.
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So (cy)′ = cb and cy = D + c0, where D =
∫
cb and c0 is an

integration constant. So we have the solution y = c−1(D + c0). To

sum up,

y(x) = e−A(x)
(∫

eA(x)b(x) + c0

)
, A(x) =

∫
a(x) .

Note that y(x) is defined on the whole I (the domain of definition

of the functions a and b) and that each initial condition y(x0) = y0
corresponds to exactly one value of the integration constant c0 for

which it is satisfied.

Exercise 16 Solve the equation with separated variables

v · v′ = − gR2

(R + x)2
.

Here R ≈ 6378 km is the radius of the Earth, g ≈ 9.81 ms−2 is

the gravitational acceleration, x > 0 is the height (in meters) of

a particle that was ejected from Earth’s surface with the speed

v = v0, and v = v(x) is its speed at the height x. Calculate the

escape velocity (also the second cosmic velocity), i.e., the velocity

v0 for which the particle will never fall back to Earth.

Exercise 17 Consider a particle with mass m that falls from

the rest under the influence of constant gravity and on which,

in addition to the weight, the resistance of the environment acts

in such a way that the strength of the resistance is proportional

to the speed of the particle. Find a 1st order linear ODE for

this problem and solve it. Calculate the limit velocity that the

particle (almost) reaches.
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THANK YOU FOR YOUR ATTENTION!

Here are twelve exam questions.

1. Define metric space and spherical metric. Prove that the he-

misphere is not flat — T. 12 in L. 1.

2. Prove Ostrowski’s theorem — T. 6 in L. 2.

3. Prove the Heine–Borel theorem — T. 11 in L. 3.

4. Prove the existence of n-th roots in C— T. 2 in L. 4.

5. Prove Baire’s theorem — T. 19 in L. 4.

6. Explain, how to show that
∞∑
n=1

1

n2
=
π2

6

— see L. 7.

7. Prove that the MS C([0, 1]) of continuous functions (with the

maximum metric) is complete — P. 17 in L. 6.

8. Prove the case d = 2 or the case d = 3 of Pólya’s theorem —

T. 8 in L 8.

9. Prove that ρ 6= 0 — T. 6 in L. 10.

10. Prove the Cauchy–Goursat theorem for rectangles — T. 12 in

L. 10.

11. Prove Picard’s theorem — T. 6 in L. 13.

12. Solve the differential equation y′ + ay = b for the unknown

function y = y(x) (and given functions a(x) and b(x)) — see

L. 14.
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