
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 9 (April 16, 2025) INTRODUCTION TO

COMPLEX ANALYSIS 1 (revised on April 22)

• What we prove in the next three lectures. In this and the

next two lectures we prove Theorem 7 stated below. It says that

if a function f : C → C has derivative everywhere, then for some

coefficients an ∈ C, n = 0, 1, . . . , we have for every z ∈ C that

f (z) =
∑

n≥0 anz
n
(

= limn→∞
∑n

j=0 ajz
j
)
.

• Complex numbers

C = {z = a + bi : a, b ∈ R} (i =
√
−1)

form a normed field

COF = (C, 0, 1, +, ·, | · |) .

The norm is Euclidean one, |z| = |a + bi| =
√
a2 + b2.

Exercise 1 Prove the triangle inequality that for every num-

bers u, v ∈ C we have |u + v| ≤ |u| + |v|.

Complex numbers form a metric space (C, d) with the metric

d(z1, z2) = |z1 − z2| .

It is complete and is isometric to the Euclidean plane R2.

Exercise 2 Prove that (C, d) is a complete metric space.
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Non-empty open subsets of C are denoted by U,U0, U1, . . . , and

z is the complex variable. Recall the notation

re(a + bi) = a and im(a + bi) = b

for the real and imaginary part of the number a + bi. For a given

u ∈ C and r > 0, we denote by

B(u, r) = {z ∈ C : |z − u| < r}

the open disc with the center u and radius r > 0.

• Holomorphic functions. For a function f : U → C and a point

z0 ∈ U , the derivative f ′(z0) of f at z0 is defined as for real

functions:

f ′(z0) = limz→z0
f(z)−f(z0)

z−z0
(∈ C) ,

if this limit exists. More explicitly, the number f ′(z0) ∈ C is the

derivative of f at z0 if and only if for every ε > 0 there is a δ > 0

such that for every z ∈ U with 0 < |z − z0| ≤ δ we have∣∣f(z)−f(z0)
z−z0

− f ′(z0)
∣∣ ≤ ε .

We call a function f : U → C holomorphic on U if it has derivative

at every point z0 ∈ U . We denote the function

U 3 z0 7→ f ′(z0) ∈ C

by f ′, so that f ′ : U → C. A function f : C → C is called entire

if it is holomorphic on C. The next exercise shows that complex

derivatives have the same algebraic properties as real ones.

Exercise 3 Prove the next proposition.
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Proposition 4 (properties of derivatives) Let

f, g : U → C and h : U0 → C

be holomorphic functions and α, β ∈ C. The following hold.

1. The function αf + βg is holomorphic on U and (αf + βg)′

equals αf ′ + βg′.

2. The product fg is holomorphic on U and (fg)′ = f ′g+ fg′.

3. If g 6= 0 on U , then the ratio f/g is holomorphic on U and

(f/g)′ = (f ′g − fg′)/g2.

4. If h[U0] ⊂ U , then the composite function f (h) : U0 → C is

holomorphic on U0 and (f (h))′ = f ′(h) · h′.

Exercise 5 Show that (i) (n ∈ N) (zn)′ = nzn−1 on C and (ii)

the derivative of a constant function is the zero function.

• Analytic functions. The function f : U → C is analytic on U if

for every point z0 ∈ U there exist numbers an in C, n = 0, 1, . . . ,

such that for every open disc B = B(z0, r) contained in U we have

for every z ∈ B that

f (z) =
∑∞

n=0 an(z − z0)n
(

= limn→∞
∑n

j=0 aj(zj − z0)j
)
.

Exercise 6 If f : U → C is analytic then it is holomorphic.

• The first difference of analysis in C and analysis in R. In

complex analysis the following theorem holds.

Theorem 7 (holomorphic ⇒ analytic) If f : C → C is an

entire function, then there exist coefficients an in C, n = 0, 1,

. . . , such that for every number z ∈ C we have

f (z) =
∑∞

n=0 anz
n .
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In our three lectures we prove only this result for entire functions.

It holds more generally that every holomorphic function on U is

analytic on U . For real functions this is not true.

Exercise 8 We define a function

f : R→ R

by f (x) = 0 for x ≤ 0 and by f (x) = x2 for x ≥ 0. Prove that

(i) f has finite f ′(x) (∈ R) for every x ∈ R but (ii) f cannot

be expressed on any neighborhood of 0 by a power series f (x) =∑
n≥0 anx

n. The hint for (ii) is that the function expressed by

a power series has derivatives of all orders.

• The second difference of analysis in C and analysis in R.

A function f : U → C is bounded if for some constant c ≥ 0 we

have |f (z)| ≤ c for every z ∈ U . In our three lectures we prove also

the following theorem.

Theorem 9 (J. Liouville, 1847) If f : C → C is entire and

bounded, then f is constant.

This again is not true for real functions:

Exercise 10 Show that the function f (x) = e−x
2
: R → R is

a counterexample to the real Liouville theorem.

Exercise 11 Deduce from Liouville’s theorem the Fundamental

Theorem of Algebra that every non-constant polynomial p(z) in

C[z] has a root. The hint is to consider the function 1/p(z).

• The third difference of analysis in C and analysis in R con-

cerns the continuity of derivatives.
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Corollary 12 (all derivatives) If f : U → C is a holomor-

phic function then it has derivatives f (n) : U → C of all orders

n ∈ N. In particular, f ′ : U → C is a continuous function.

Proof. Holomorphic functions are analytic and analytic functions

have derivatives of all orders. 2

Exercise 13 Find a function f : R → R that has f ′ : R → R
but does not have f ′′ : R→ R.

Exercise 14 Describe a function f : R→ R with discontinuous

f ′ : R→ R.

• The fourth difference of analysis in C and analysis in R is

perhaps the most surprising one.

Theorem 15 (maximum modulus principle) Let f : U →
C be a holomorphic function. Then for every point z0 ∈ U and

every δ > 0 there is a point z ∈ U with 0 < |z − z0| ≤ δ such

that |f (z)| ≥ |f (z0)|.

Thus the modulus function |f | of a holomorphic function f does

not have strict local maximum. We will not prove this theorem.

Exercise 16 The function f (x) = 1 − x2 disproves the maxi-

mum modulus principle for real functions.

• Segments and their partitions. In order to prove Theorems 7

and 9 we need integrals over segments and over boundaries of rectan-

gles. We define these geometric objects. For a, b ∈ C, a 6= b, the

segment u = ab (⊂ C) spanned by the points a and b is the image

u = ab = ϕ[ [0, 1] ] = {ϕ(t) : 0 ≤ t ≤ 1} (⊂ C)
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of the interval [0, 1] by the linear function

ϕ(t) = (b− a)t + a : [0, 1]→ C

which has values ϕ(0) = a and ϕ(1) = a. The segment is oriented

from a to b. So ab and ba are two different segments. The segment

ab has length |u| = |ab| = |b − a| (≥ 0). A partition p of the

segment u = ab is a (k + 1)-tuple, k ∈ N, p = (a0, a1, . . . , ak)

(⊂ u) of the points

ai = ϕ(ti), i = 0, 1, . . . , k ,

lying on u, which are images of the points ti in a partition 0 = t0 <

t1 < · · · < tk = 1 of the interval [0, 1]. So a0 = a, ak = b and the

points a0, a1, . . . , ak run on u from a to b. The norm ‖p‖ of p is

‖p‖ = max
1≤i≤k

|ai−1ai| = max
1≤i≤k

|ai − ai−1| .

Exercise 17 For every partition p = (a0, a1, . . . , ak) of a seg-

ment u = ab we have
∑k

i=1 |ai−1ai| = |ab|.
• Cauchy sums. Let u be a segment, f : u→ C be a function and

p = (a0, a1, . . . , ak) be a partition of u. We define the Cauchy sum

C(f, p) and the modified Cauchy sum C ′(f, p) by

C(f, p) =
∑k

i=1 f (ai) · (ai − ai−1) (∈ C) and

C ′(f, p) =
∑k

i=1 f (ai−1) · (ai − ai−1) (∈ C) .

This terminology is justified by the fact that A.-L. Cauchy conside-

red these sums already in 1823 when he defined complex integrals

for continuous functions.

Exercise 18 Show that

|C(f, p)|, |C ′(f, p)| ≤ sup
z∈u
|f (z)| · |u| (∈ [0, +∞) ∪ {+∞}) .
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• Rectangles. Let α < β and γ < δ be four real numbers. They

determine the rectangle

R = {z ∈ C : α ≤ re(z) ≤ β ∧ γ ≤ im(z) ≤ δ} (⊂ C) .

R has sides parallel to the real and imaginary axis. If β − α =

δ − γ, we call R a square. The canonical vertices of R is the

quadruple (a, b, c, d) in C4 such that

a = α + γi, b = β + γi, c = β + δi and d = α + δi.

It is a counter-clockwise enumeration of the four vertices of R, star-

ting from the bottom left vertex. The boundary of the rectangle R

is the union of segments

∂R = ab ∪ bc ∪ cd ∪ da .

The interior of R is int(R) = R \ ∂R. The perimeter of R is the

sum of lengths of all four sides,

per(R) = |ab| + |bc| + |cd| + |da| .

• Integrals and their existence. We define the integral
∫
u f for

a segment u and a (usually continuous) function f : u → C. If for

every sequence (pn) of partitions pn of u with lim ‖pn‖ = 0 the limit

of corresponding Cauchy sums

L = lim
n→∞

C(f, pn) (∈ C)

exists, we say that f has the integral L over u and set
∫
u f = L.

Exercise 19 Prove that if the limit L exists for every sequence

(pn) as stated, then L does not depend on (pn). Thus
∫
u f is

correctly defined. Hint − interlace two sequences (pn) and (qn)

as (p1, q1, p2, q2, . . . ).
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Our definition of
∫
u f via Cauchy sums differs from the Riemann

integral which uses Riemann sums

R(f, p, q) =
∑k

i=1 f (bi)(ai − ai−1) ,

where p = (a0, a1, . . . , ak) is a partition of the segment u = ab

as before and q = (b1, b2, . . . , bk) are some tags bi ∈ ai−1ai. For

continuous functions f there is no difference whether
∫
u f is defined

by C(f, p) or by R(f, p, q), but in general the two integrals differ. It

is well known that for unbounded functions f the Riemann integral∫
u f never exists. Exercise 25 contains an example of an unbounded

function f such that the Cauchy integral
∫
u f exists. In our lectures

we prefer the simple Cauchy integral, but for possibly discontinuous

functions the Riemann integral is more satisfactory.

Let R be a rectangle and f : ∂R → C be a function. We define

the integral of f over the boundary of R by the sum∫
∂R f =

∫
ab f +

∫
bc f +

∫
cd f +

∫
da f ,

if these four integrals over the sides of R exist. Here (a, b, c, d) are

the canonical vertices of R. We obtain the basic existence theorem

for these integrals.

Theorem 20 (existence of
∫
) Suppose that u is a segment

and R is a rectangle.

1. If f : u→ C is continuous then the integral
∫
u f exists.

2. If f : ∂R→ C is continuous then the integral
∫
∂R f exists.

Proof. Clearly, part 2 follows from part 1, which we prove. Let

u = ab be a segment and f : u→ C be a continuous function. We

show that for every sequence (pn) of partitions of u with lim ‖pn‖ =
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0 the sequence (C(f, pn)) of corresponding Cauchy sums is Cauchy.

Since C is a complete metric space, the result follows.

By Exercise 23, it suffices to prove the Cauchy condition for

Cauchy sums − for every ε there is a δ such that for every two

partitions p an q of u with ‖p‖, ‖q‖ ≤ δ we have (f is continuous)

|C(f, p)− C(f, q)| ≤ ε .

We prove this Cauchy condition. By Exercise 24 f is uniformly

continuous and so for the given ε > 0 we take a δ > 0 that

x, y ∈ u ∧ |x− y| ≤ δ ⇒ |f (x)− f (y)| ≤ ε
|u| .

Let p = (a0, a1, . . . , ak) and q = (b0, b1, . . . , bl) be two partitions

of u with ‖p‖, ‖q‖ ≤ δ. First suppose that p refines q: q ⊂ p, hence

bj = aij , j = 0, 1, . . . , l, for some indices 0 = i0 < i1 < · · · < il =

k. Then

C(f, p)
(1)
=
∑l

j=1C(f, pj) ,

where pj = (aij−1, aij−1+1, . . . , aij) is the partition of the segment

uj = aij−1aij = bj−1bj, and

C(f, q)
(2)
=
∑l

j=1C(gj, pj) ,

where gj : uj → C denotes the function that has the constant value
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f (bj) (= f (aij)) on uj. Then

|C(f, q)− C(f, p)|
eqs. (1) and (2), ∆-ineq.

≤
∑l

j=1 |C(gj, pj)− C(f, pj)|
def. of pj and gj

≤
∑l

j=1

∣∣∑aij
m=aij−1+1(f (aij)− f (am)) ·

· (am − am−1)
∣∣

∆ ineq., δ and am
<

∑l
j=1

∑aij
m=aij−1+1

ε
|u| · |am − am−1|

Exercise 17
=

∑l
j=1

ε
|u| · |bj − bj−1|

Exercise 17
= ε

|u| · |u| = ε .

For two general partitions we use the refinement trick. For a given

ε > 0 we take the δ > 0 whose existence we proved in the previous

paragraph, i.e., such that for every two partitions p′ and q′ of the

segment u, where ‖p′‖, ‖q′‖ ≤ δ and one of them refines the other,

it holds that |C(f, p′) − C(f, q′)| ≤ ε
2. Now if p and q are two

arbitrary partitions of the segment u with ‖p‖, ‖q‖ ≤ δ, we take

their common refinement, the partition r = p ∪ q. It refines both

p and q and satisfies that ‖r‖ ≤ δ. By the definition of δ, we have

the desired inequality:

|C(f, p)− C(f, q)| ≤ |C(f, p)− C(f, r)| +
+ |C(f, r)− C(f, q)| ≤ ε

2 + ε
2 = ε .

2

• Properties of integrals. We show that integrals are linear, and

for continuous f satisfy the ML bound and are additive.

Theorem 21 (properties of
∫
) Suppose that u = ab is a seg-

ment, R is a rectangle and f, g : u, ∂R→ C are two functions,

both defined on u or on ∂R. The following holds.
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1. For every α, β ∈ C the equality∫
u(αf + βg) = α

∫
u f + β

∫
u g

holds if the last two integrals exist. The same linearity holds

for the integral
∫
∂R.

2. If f is continuous then the integrals
∫
u f and

∫
∂R f exist

and are bounded by the ML bounds∣∣ ∫
u f
∣∣ ≤ max

z∈u
|f (z)| · |u| and

∣∣ ∫
∂R f

∣∣ ≤ max
z∈∂R
|f (z)| · per(R) .

3. If f : u→ C is continuous then
∫
ba f = −

∫
ab f .

4. Let c be an interior point of u = ab, which means that

c ∈ ab and c 6= a, b. If f : u→ C is continuous then
∫
ab f =∫

ac f +
∫
cb f .

Proof. 1. Let α, β ∈ C and f, g : u→ C be such that the integrals∫
u f and

∫
u g exist. Let (pn) be any sequence of partitions of u with

lim ‖pn‖ = 0. Then

limC(αf + βg, pn) = lim
(
αC(f, pn) + βC(g, pn)

)
= α limC(f, pn) + β limC(g, pn)

= α
∫
u f + β

∫
u g ,

which proves the former linearity. The latter linearity follows from

the former.

2. The maxima exist by Exercise 22. The former bound follows by

a limit transition from the definition of
∫
u f and from Exercise 18.

The latter bound follows from the former.
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3. Now we use the modified Cauchy sums C ′(f, p). Since f is

uniformly continuous (Exercise 24),

C(f, pn) = C ′(f, pn) + o(1) (n→ +∞)

for every sequence (pn) of partitions of u with lim ‖pn‖ = 0. But

then limC(f, pn) =
∫
ab f and limC ′(f, pn) =

∫
ba(−f ).

4. Let c be an inner point of ab and let f : u→ C be a continu-

ous function. Let (pn) be a sequence of partitions of ab such that

lim ‖pn‖ = 0. The point c splits in the obvious way every pn in a par-

tition qn of ac and a partition rn of cb; if c is inside a subsegment

of pn, we split the subsegment in two. Clearly, ‖qn‖, ‖rn‖ ≤ ‖pn‖.
Since f is uniformly continuous (Exercise 24),

C(f, pn) = C(f, qn) + C(f, rn) + o(1) (n→ +∞) .

The identity
∫
ab f =

∫
ac f +

∫
cb f follows by limit transition. 2

Exercise 22 Explain why the two maxima in part 2 of the the-

orem exist.

Exercise 23 Let u be a segment and

f : u→ C

be a continuous function. Show that if the Cauchy condition for

Cauchy sums holds, then for every sequence (pn) of partitions

of u with lim ‖pn‖ = 0 the sequence of Cauchy sums (C(f, pn))

(⊂ C) is Cauchy.

Exercise 24 Let A ⊂ M be a compact set in a metric space

(M,d) and let f : A→ N be a continuous function to the metric

space (N, e). Prove that then f is uniformly continuous, that is,

∀ ε ∃ δ
(
a, b ∈ A ∧ d(a, b) ≤ δ ⇒ e(f (a), f (b)) ≤ ε

)
.
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Exercise 25 Let f : [0, 1]→ [0,+∞) be given by f (x) = 1√
x

for

x > 0 and f (0) = 0. We regard the interval [0, 1] as the complex

segment u = 01. Although the function f is unbounded, show

that the (Cauchy) integral
∫
u f exists and compute it.

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by

the end of the coming Sunday solutions to the Exercises 2, 8, 11,

17 a 24.
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