MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2024/25
lecturer: Martin Klazar

LECTURE 9 (April 16, 2025) INTRODUCTION TO
COMPLEX ANALYSIS 1 (revised on April 22)

o What we prove in the next three lectures. In this and the
next two lectures we prove Theorem 7 stated below. It says that
if a function f: C — C has derivative everywhere, then for some
coefficients a,, € C, n =0,1,..., we have for every z € C that

f(2) = D50 an2" (: limy, 00 Z?:o ajzj) :
e Complexr numbers
C={z=a+bi: a,beR} (i=+—1)
form a normed field
Cor=(C, 0,1, +, - |-]).
The norm is Euclidean one, |z| = |a + bi| = Va2 + b2,

Exercise 1 Prove the triangle inequality that for every num-
bers u,v € C we have |u+v| < |u| + |v|.

Complex numbers form a metric space (C, d) with the metric
d(Zl, ZQ) == ‘Zl - 22‘ .
It is complete and is isometric to the Euclidean plane R2.

Exercise 2 Prove that (C,d) is a complete metric space.



Non-empty open subsets of C are denoted by U, Uy, Uy, ..., and
2 is the complex variable. Recall the notation

re(a + bi) = a and im(a+bi) = b

for the real and imaginary part of the number a + b:z. For a given
u € C and r > 0, we denote by

B(u,r)=4{2¢€C: |z—u| <71}

the open disc with the center u and radius r > 0.

e Holomorphic functions. For a function f: U — C and a point
2o € U, the derwative f'(zy) of f at zy is defined as for real
functions:

F(z0) = lim,, f(z)=[f(=0) (e ),

2—20
if this limit exists. More explicitly, the number f'(z;) € C is the
derivative of f at zy if and only if for every € > 0 thereisa 6 > 0
such that for every z € U with 0 < |z — 2y| < 9§ we have

‘f(z)—f(zo) o f/(Zo)} <e.

z2—2

We call a function f: U — C holomorphic on U if it has derivative
at every point zy € U. We denote the function

Uz f(20) €C

by f’, so that f': U — C. A function f: C — C is called entire
if it is holomorphic on C. The next exercise shows that complex
derivatives have the same algebraic properties as real ones.

Exercise 3 Prove the next proposition.



Proposition 4 (properties of derivatives) Let

f,9g:U—C and h: Uy— C
be holomorphic functions and o, 3 € C. The following hold.
1. The function af + Bg is holomorphic on U and (a.f + Bg)’
equals af' + B¢’
2. The product fg is holomorphic on U and (fg) = f'g+ f¢'.

3. If g # 0 on U, then the ratio f/g is holomorphic on U and
(f/9) = (f'g—fd)/g".

4. If h[Uy] C U, then the composite function f(h): Uy — C is
holomorphic on Uy and (f(h)) = f'(h) - R/

Exercise 5 Show that (i) (n € N) (2") = nz""! on C and (ii)
the derivative of a constant function is the zero function.

e Analytic functions. The function f: U — C is analytic on U if
for every point zy € U there exist numbers a,, in C, n = 0,1, ...,
such that for every open disc B = B(z, r) contained in U we have
for every z € B that

f(z) = ZZO:O an(z — 20)" (Z limy, 0 Z?:o aj(zj - ZO)j) :
Exercise 6 If f: U — C s analytic then it is holomorphic.

o The first difference of analysis in C and analysis in R. In
complex analysis the following theorem holds.

Theorem 7 (holomorphic = analytic) If f: C — C is an
entire function, then there exist coefficients a,, in C, n =0, 1,
.., such that for every number z € C we have

f(z) =2 ganz".
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In our three lectures we prove only this result for entire functions.
It holds more generally that every holomorphic function on U is
analytic on U. For real functions this is not true.

Exercise 8 We define a function

ffTR—=>R
by f(z) =0 for x <0 and by f(x) = 2 for x > 0. Prove that
(i) f has finite f'(x) (€ R) for every x € R but (ii) f cannot
be expressed on any neighborhood of 0 by a power series f(x) =

> n>0an®". The hint for (i) is that the function expressed by
a power series has derivatives of all orders.

o The second difference of analysis in C and analysis in R.
A function f: U — C is bounded if for some constant ¢ > 0 we
have |f(2)| < cfor every z € U. In our three lectures we prove also
the following theorem.

Theorem 9 (J. Liouville, 1847) If f: C — C 1is entire and
bounded, then f is constant.

This again is not true for real functions:

Exercise 10 Show that the function f(x) = e ™R — R s
a counterexample to the real Liouuville theorem.

Exercise 11 Deduce from Liouville’s theorem the Fundamental
Theorem of Algebra that every non-constant polynomial p(z) in
C|z] has a root. The hint is to consider the function 1/p(z).

o The third difference of analysis in C and analysis in R con-
cerns the continuity of derivatives.
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Corollary 12 (all derivatives) If f: U — C is a holomor-
phic function then it has derivatives f: U — C of all orders
n € N. In particular, f': U — C is a continuous function.

Proof. Holomorphic functions are analytic and analytic functions
have derivatives of all orders. O

Exercise 13 Find a function f: R — R that has f': R — R
but does not have f": R — R.

Exercise 14 Describe a function f: R — R with discontinuous
"R — R.

e The fourth difference of analysis in C and analysis in R is
perhaps the most surprising one.

Theorem 15 (maximum modulus principle) Let f: U —
C be a holomorphic function. Then for every point zy € U and
every § > 0 there is a point z € U with 0 < |z — 29| < § such

that | f(2)| = |f(20)]-
Thus the modulus function |f| of a holomorphic function f does

not have strict local maximum. We will not prove this theorem.

Exercise 16 The function f(z) = 1 — 2* disproves the mazi-
mum modulus principle for real functions.

o Segments and their partitions. In order to prove Theorems 7
and 9 we need integrals over segments and over boundaries of rectan-
gles. We define these geometric objects. For a,b € C, a # b, the
segment u = ab (C C) spanned by the points a and b is the image

u=ab=o[|0,1]] ={t): 0<t<1} (CC)

bt



of the interval [0, 1] by the linear function
p(t)=(0b—-a)t+a:|0,1] =C

which has values ¢(0) = a and (1) = a. The segment is oriented
from a to b. So ab and ba are two different segments. The segment
ab has length |u| = |ab] = |b — a|] (> 0). A partition p of the
segment u = ab is a (k + 1)-tuple, & € N, p = (ag,aq,...,a;)
(C u) of the points

CLZ‘IQO(ti), i:O, 1,...,]43,

lying on u, which are images of the points ¢; in a partition 0 =t <
ty < .-+ <t = 1 of the interval |0, 1]. So ag = a, a;, = b and the

points ag, ai, ..., a; run on u from a to b. The norm ||p|| of p is
Ipll = max |a;—1a;] = max |a; — a;i] .

Exercise 17 For every partition p = (ag, a1, ...,a;) of a seg-

ment u = ab we have S0, |a;_1a;] = |ab|.

e Cauchy sums. Let u be a segment, f: u — C be a function and
p = (ag,ay, ..., a;) be a partition of u. We define the Cauchy sum

C(f,p) and the modified Cauchy sum C'(f,p) by

C(f,p) = Zfﬂ fla;) - (a; —a;—1) (€ C) and
C/(fa p) = Zf:l fla;—1) - (a; —a;—1) (€ C).
This terminology is justified by the fact that A.-L. Cauchy conside-

red these sums already in 1823 when he defined complex integrals
for continuous functions.

Exercise 18 Show that
IC(f, p)I, 1C'(f, )| <sup|f(2)] - |ul (€ [0, +00) U {+o0}) .

ZEU
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e Rectangles. Let o < 8 and v < ¢ be four real numbers. They
determine the rectangle

R={z€C: a<re(z) <Ay <im(z) <§} (CcC).

R has sides parallel to the real and imaginary axis. If 5 — a =
0 — v, we call R a square. The canonical vertices of R is the
quadruple (a, b, ¢, d) in C* such that

a=a+y, b=pB+v, c=p+0d and d= a+ d.

It is a counter-clockwise enumeration of the four vertices of R, star-
ting from the bottom left vertex. The boundary of the rectangle R
is the union of segments

OR=abUbcUcdUda .

The interior of R is int(R) = R\ OR. The perimeter of R is the
sum of lengths of all four sides,

per(R) = |ab| + |bc| + |cd| + |da] .

e Integrals and their existence. We define the integral fu f for
a segment v and a (usually continuous) function f: u — C. If for
every sequence (p,,) of partitions p,, of u with lim ||p,|| = 0 the limit
of corresponding Cauchy sums

L= lim C(f, p,) (€ C)

n—o0

exists, we say that f has the integral L over u and set fu f=0L.

Exercise 19 Prove that if the limit L exists for every sequence
(pn) as stated, then L does not depend on (p,). Thus [ f is
correctly defined. Hint — interlace two sequences (p,) and (qy,)

as (ph q1,pP2,492, - - - )



Our definition of fu f via Cauchy sums differs from the Riemann
integral which uses Riemann sums

R(f,p, q) = >0 f(bi)(a; — ai_1),

where p = (ag, a1, ...,a;) is a partition of the segment u = ab
as before and g = (by,bo, ..., b;) are some tags b; € a;_1a;. For
continuous functions f there is no difference whether fu f is defined
by C'(f,p) or by R(f,p, q), but in general the two integrals differ. It
is well known that for unbounded functions f the Riemann integral
fu f never exists. Exercise 25 contains an example of an unbounded
function f such that the Cauchy integral fu f exists. In our lectures
we prefer the simple Cauchy integral, but for possibly discontinuous
functions the Riemann integral is more satisfactory:.

Let R be a rectangle and f: R — C be a function. We define
the integral of f over the boundary of R by the sum

f@Rf:fabf+fbcf+fcdf+fdaf7

if these four integrals over the sides of R exist. Here (a, b, ¢, d) are
the canonical vertices of R. We obtain the basic existence theorem
for these integrals.

Theorem 20 (existence of [) Suppose that u is a segment
and R 1s a rectangle.

1. If f: u— C is continuous then the integral fuf exists.
2. If f: OR — C 1s continuous then the integral faR f exists.

Proof. Clearly, part 2 follows from part 1, which we prove. Let
u = ab be a segment and f: u — C be a continuous function. We
show that for every sequence (p,,) of partitions of u with lim ||p, || =
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0 the sequence (C'(f, pn)) of corresponding Cauchy sums is Cauchy.
Since C is a complete metric space, the result follows.

By Exercise 23, it suffices to prove the Cauchy condition for
Cauchy sums — for every e there is a ¢ such that for every two
partitions p an ¢q of w with ||p||, ||¢|| < & we have (f is continuous)

IC(f, p)—C(f, q)| <e.

We prove this Cauchy condition. By Exercise 24 f is uniformly
continuous and so for the given € > 0 we take a 6 > 0 that

oy €ulle—yl<d=[fle) - fW)l < g

Jul *

Let p = (ag, a1, ...,a;) and g = (bg, by, ..., b;) be two partitions
of uw with ||p||, ||¢|| < ¢. First suppose that p refines q: ¢ C p, hence
bj =a;;, 7=0,1,...,1 for some indices 0 =49 <3 < -+ <4 =
k. Then 0

C(f, p) = X Cf, 1)),
where p; = (%-_17 Qij_ 1415y aij) is the partition of the segment
Uj = a;;_,a;; = bj_1b;, and

C(fa Q) (i) Zé’:l C(.gjv p]) ;

where g;: u; — C denotes the function that has the constant value



f(b;) (= f(ai;)) on u;. Then
egs. (1) and (2), A-ineq. ]
< Z]’:1 |Clgj, pj) — C(f, pj)l

def. of p; and g;

2 St | oy (@) = Flan))

: (am - am—l)‘
A ineq., 6 and a,,

< Z] IZm @i 1+1%\. ’am_am_l,
Exergse 17 2221 ﬁ . ’b] . j 1‘ Exercise 17 |%| . ”LL’ _

For two general partitions we use the refinement trick. For a given
e > 0 we take the 0 > 0 whose existence we proved in the previous
paragraph, i.e., such that for every two partitions p’ and ¢’ of the
segment u, where ||p'||, ||¢’|] < d and one of them refines the other,

it holds that |C(f, p') — C(f.¢')| < 5. Now if p and ¢ are two
arbitrary partitions of the segment u with ||p||, |l¢|]| < J, we take
their common refinement, the partition r = p U ¢q. It refines both
p and ¢ and satisfies that ||r|| < §. By the definition of §, we have

the desired inequality:
[C(f, p) = C(f, q)

|
™

< |C(f;p) = CUf )] +
+ |C(f,r) = Cf g)| <

l\DIm

€4
5 T
0

e Properties of integrals. We show that integrals are linear, and
for continuous f satisfy the ML bound and are additive.

Theorem 21 (properties of f) Suppose that u = ab 1s a seq-
ment, R 1s a rectangle and f,qg: u,0R — C are two functions,
both defined on u or on OR. The following holds.
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1. For every a, 8 € C the equality
Jlaf+Bg)=a [, f+8][,9

holds if the last two integrals exist. The same linearity holds
for the integral [, ,.

2. If f is continuous then the integrals [ f and [, f exist
and are bounded by the ML bounds

[ i f] S max|f@)] - [l and | fyq f] < max| f(2)] - per(R)

8. If f: uw— C is continuous then [, f=— /[, f.

4. Let ¢ be an interior point of u = ab, which means that
c€abandc# a,b. If f: u— C is continuous then fabf =

facf+fcbf'

Proof. 1. Let o, 8 € Cand f, g: u — C be such that the integrals
[, fand [ gexist. Let (p,) be any sequence of partitions of u with
lim ||p,|| = 0. Then

lim C(af 4+ Bg, pp) = lim (aC(f, pn) + BC(g, pn))
= alimC(f, p,) + Blim C(g, p,)
= « fu f + 6 fug7

which proves the former linearity. The latter linearity follows from
the former.

2. The maxima exist by Exercise 22. The former bound follows by
a limit transition from the definition of fu f and from Exercise 18.
The latter bound follows from the former.
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3. Now we use the modified Cauchy sums C’(f,p). Since f is
uniformly continuous (Exercise 24),

C(f, pn) = C'(f, pn) + 0(1) (n — +00)
for every sequence (pn) of partitions of u with lim || an = 0. But

then im C(f,p,) = [, f and im C'(f,pn) = [, (—
4. Let ¢ be an inner point of ab and let f: u — C be a continu-

ous function. Let (p,) be a sequence of partitions of ab such that
lim ||p,,|| = 0. The point ¢ splits in the obvious way every p,, in a par-
tition ¢, of ac and a partition r, of ¢b; if ¢ is inside a subsegment
of p,,, we split the subsegment in two. Clearly, ||q.||, |||l < ||pall-
Since f is uniformly continuous (Exercise 24),

C(f, pn) = C(f, @a) + C(f; ) +0(1) (0 — +00).
The identity [, f = [ f+ [, f follows by limit transition. ~ O

Exercise 22 FEzplain why the two mazxima in part 2 of the the-
orem exist.

Exercise 23 Let u be a segment and
fiu—C

be a continuous function. Show that if the Cauchy condition for
Cauchy sums holds, then for every sequence (p,) of partitions
of w with lim ||p,|| = 0 the sequence of Cauchy sums (C(f,pn))
(C C) is Cauchy.

Exercise 24 Let A C M be a compact set in a metric space
(M,d) and let f: A — N be a continuous function to the metric
space (N, e). Prove that then f is uniformly continuous, that is,

Ve3d(a, be And(a, b) <6 = e(f(a), f(b) <e).
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Exercise 25 Let f: [0,1] — [0,400) be given by f(z) = ﬁ for
x>0 and f(0) = 0. We regard the interval [0, 1] as the complex
segment u = 01. Although the function f is unbounded, show
that the (Cauchy) integral [ f exists and compute it.

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send me (klazar@Qkam.mff.cuni.cz) by

the end of the coming Sunday solutions to the Exercises 2, 8, 11,
17 a 24.
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