
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 8 (April 9, 2025) G. PÓLYA’S 1921

THEOREM ON RANDOM WALKS IN Zd BY POWER SERIES

• Pólya’s theorem, but first graphs and walks. Before we state this

theorem, which can be classified equally well to belong to probability

theory or (as we approach it here) to enumerative combinatorics,

we need a number of definitions. A graph G = (V,E) consists of

the set of vertices V and the set of edges E ⊂
(
V
2

)
. Here(

V
2

)
= {A | A ⊂ V ∧ |A| = 2}

is the set of all two-element subsets of the set V .

Exercise 1 Find a formula for the number of all graphs with

an n-element vertex set V .

However, in Pólya’s theorem we will be interested in certain in-

finite graphs. A graph G = (V,E) is d-regular, d ∈ N, if every

vertex has d neighbors, that is,

∀ v ∈ V
(
|

N(v)︷ ︸︸ ︷
{u ∈ V | {u, v} ∈ E} | = d

)
.

G is locally finite if each vertex v ∈ V has only finitely many

neighbors, i.e., the set N(v) is finite. A walk w in the graph G =

(V,E) is a finite,w = (v0, v1, . . . , vn) with the length |w| = n ∈ N0,

or infinite, w = (v0, v1, . . . ), sequence of vertices vi ∈ V such that

for each i ∈ N0 (< n), {vi, vi+1} ∈ E. We call v0 the start of the

walk w. We define

dn(v0, G) = |{w | w ⊂ V is a walk with start v0 and |w| = n}| .
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It is the number of walks in G with a given start v0 and length n.

Exercise 2 Prove that in any d-regular graph,

dn(v0, G) = dn .

A recurrent walk w = (v0, v1, . . . , vn) revisits the start: there

exists i ∈ {1, 2, . . . , n} such that vi = v0. Let

an(v0, G) = |{w | w ⊂ V is recurrent with start v0 and |w| = n}|

be the number of recurrent walks in G with a given start v0 and

length n.

An automorphism of the graphG = (V,E) is a bijection f : V →
V such that

∀u, v ∈ V
(
{u, v} ∈ E ⇐⇒ {f (u), f (v)} ∈ E

)
.

Exercise 3 Describe all automorphisms of the path P6 and the

circle C6 of length 6. Here V = {1, 2, . . . , 6}, P6 has edges

E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}

and C6 has edges

E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}} .

G = (V,E) is (vertex) transitive when

∀u, v ∈ V ∃F
(
F is an automorphism of G ∧ F (u) = v

)
.

Proposition 4 (graph walks) The number of walks, resp. of

recurrent walks, of the given length in a transitive graph does

not depend on the start: if G = (V,E) is transitive and locally

finite, then for every n ∈ N0 and every two vertices u, v ∈ V ,

dn(u, G) = dn(v, G), resp. an(u, G) = an(v, G) .
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Proof. Let u, v ∈ V be any two given vertices and n ∈ N0. Let F

be an automorphism of G sending u to v. We consider finite sets

of walks in the graph G with length n,

Pn = {w | w has start u} and Qn = {w | w has a start v} .

For a map J : V → V and a walk or any sequence of vertices

w = (v0, v1, . . . , vn) we define

J(w) = (J(v0), J(v1), . . . , J(vn)) .

It is then easy to see that the functions

Pn 3 w 7→ F (w) ∈ Qn and Qn 3 w 7→ F−1(w) ∈ Pn
are injections, so |Pn| = |Qn|. For recurrent walks, the argument is

the same. 2

In the transitive graphs G, we will therefore have the number of

walks, or of recurrent walks, with length n denoted briefly as dn(G),

or an(G).

Exercise 5 Give some examples showing that in a general graph

the number of walks depends on the start.

Exercise 6 Prove that the infinite path

P = (Z, {{n, n + 1} | n ∈ Z})

is a transitive graph and compute, how many recurrent walks it

contains with a given start and length 5.

A generalization of this graph is the graph (d ∈ N)

Zd = (Zd, {{u, v} |
∑d

i=1 |ui − vi| = 1}) ,

where we write u = (u1, . . . , ud) ∈ Zd.
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Exercise 7 Prove that the graphs Zd are transitive and that Zd
is 2d-regular.

Theorem 8 (G. Pólya, 1921) For d = 1 and 2 it is

lim
n→∞

an(Zd)
dn(Zd)

= lim
n→∞

an(Zd)
(2d)n

= 1

and for d ≥ 3 is

lim
n→∞

an(Zd)
dn(Zd)

= lim
n→∞

an(Zd)
(2d)n

< 1 .

In terms of probability, in dimensions d ≤ 2 for large n a ran-

dom walk of length n will almost certainly revisit the start, but in

dimensions d ≥ 3 it never revisits the start with probability > 0.

• Proof of Pólya’s theorem by power series. We make use of the

following theorem about power series.

Theorem 9 (weak Abel’s thm) If a power series

U(x) =

∞∑
n=0

unx
n ∈ R[[x]]

converges for every x ∈ [0, R), where R ∈ (0,+∞) is a real

number, and has all coefficients un ≥ 0, then the following limit

and infinite sum are defined and are equal,

lim
x→R

U(x) =

∞∑
n=0

unR
n (= U(R)) ,

no matter whether they are finite or +∞.
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Proof. For every N ∈ N,

N∑
n=0

unR
n = lim

x→R−

N∑
n=0

unx
n

≤ lim
x→R

U(x) = lim
x→R

∞∑
n=0

unx
n

≤
∞∑
n=0

unR
n .

Here all limits and infinite sums are defined (possibly with the value

+∞) due to monotonicity and nonnegativity. The first equality

follows from the fact that for each n ∈ N0, limx→R− x
n = Rn. The

following two inequalities follow from the non-negativity of un. The

limit transition N → +∞ gives the claim. 2

Exercise 10 Explain why in the above proof we write first the

left-sided limit limx→R−
∑N

n=0 unx
n but then the two-sided limit

limx→R U(x).

We prove Pólya’s Theorem 8 just for dimensions d = 2 and 3.

The symbols dn (or an) indicate as before the number of walks (or

the number of recurrent walks) of length n in the graph Zd.
Proof. Let d = 2 and w = (v0, v1, . . . , vn) be a walk with length

n ∈ N0 in the Z2 graph. Let bn be the number of walks w with vn =

v0 = 0 and cn be the number of walks w with vn = v0 = 0 but vj 6=
0 for j with 0 < j < n. By Proposition 4, due to the transitivity

of the Z2 graph, these counts do not depend on the start of the

walk. We put c0 = 0. It is clear that for every n ∈ N0, an ≤ dn,

cn ≤ bn ≤ dn and dn = 4n. We divide the walks counted by an into
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groups according to their first return to 0 at the vertex vj. Using

the relations dn = 4n and an ≤ 4n we get for each n ∈ N0 equations

an =

n∑
j=0

cjdn−j, so
an
4n

=

n∑
j=0

cj
4j
≤ 1 .

So it suffices to prove that
∞∑
j=0

cj
4j

= 1 .

The second relation we use binds the OGFs

B(x) =
∑
n≥0

bn
4n
xn = 1 + . . . a C(x) =

∑
n≥0

cn
4n
xn =

x2

4
+ . . . ,

namely that

B(x) =
1

1− C(x)
=
∑
k≥0

C(x)k .

This can be easily seen formally, i.e. as a relation between formal

power series, by dividing a walk counted bn in its k+1 returns to 0 in

k parts with lengths j1, j2, . . . , jk satisfying j1+· · ·+jk = n. These

are counted by the numbers cj1, . . . , cjk . But this relation also holds

at the level of real functions B(x) and C(x) for x ∈ [0, 1), because

both power series have radii of convergence ≥ 1 (since bn, cn ≤ 4n).

Now it suffices to prove that

lim
x→1−

B(x) = +∞ .

Indeed, then the above relation implies that limx→1− C(x) = 1

and this by Theorem 9 gives that
∞∑
j=0

cj
4j

= C(1) = lim
x→1−

C(x) = 1 .
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This is exactly the required sum of the infinite series.

In order to prove that limx→1− B(x) = +∞, it suffices to prove

by the Theorem 9 that

B(1) =

∞∑
j=0

bj
4j

= +∞ .

We prove it by determining bn. Obviously bn = 0 for odd n. For

even lengths n,

b2n =

n∑
j=0

(2n)!

j! · (n− j)! · j! · (n− j)!
=

(
2n

n

) n∑
j=0

(
n

j

)2

=

(
2n

n

)2

.

The first equality follows by considering all j steps to the right in

the walk w. These force the same number of j steps to the left and

the same number of n − j steps up and down. These possibilities

are counted by the multinomial coefficient
(

2n
j,j,n−j,n−j

)
. The last

equality follows from the known binomial identity in Exercise 11.

Stirling’s formula for factorial approximation (Exercise 12) leads to

the asymptotics
(
2n
n

)
∼ cn−1/24n, for n→∞ a constant c > 0. So

the 2n-th summand in the series B(1) is ∼ c2n−1 and

B(1) =

∞∑
n=0

bn
4n

=

∞∑
n=0

(
2n

n

)2

4−2n = +∞

since
∑
n−1 = +∞. 2

Exercise 11 Prove that for every n ∈ N0,

n∑
j=0

(
n

j

)2

=

(
2n

n

)
.
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Hint:
(
n
j

)
=
(

n
n−j
)

and
(
n
j

)
is the number of j-element subsets

of the n-element set.

Exercise 12 Recall Stirling’s formula

n! ∼
√

2πn
(n
e

)n
, n→∞ .

Using the integral estimate of the sum S(n) =
∑n

m=1 logm,

prove its weak version S(n) = n log n− n + O(log n).

Proof. Let d = 3. Quantities an, bn, cn and dn, OGFs B(x) and

C(x), and sums of the series B(1) and C(1) are defined as in the

previous proof, only now we are in the Z3 graph and the constant 4

is replaced by the constant 6. So now B(x) =
∑

n≥0
bn
6nx

n a C(x) =∑
n≥0

cn
6nx

n. The argument does not change, only now we can prove

that

B(1) =
∑
n≥0

bn
6n
< +∞ ,

that is, the series B(1) converges. Then, since as before B(x) =
1

1−C(x) and by the Theorem 9 is B(1) = limx→1− B(x) and C(1) =

limx→1− C(x), we get C(1) = limx→1− C(x) < 1. By this we are we

are done because as before

C(1) =

∞∑
j=0

cj
6j

= lim
n→∞

an
6n
.

So we prove the convergence of the series
∑

n≥0 bn/6n. For odd

n, bn = 0 again. We estimate b2n/62n from above. For n ∈ N0, we
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have an upper bound

b2n
62n

=
1

62n

∑
j, k∈N0
j+k≤n

(2n)!

j! · j! · k! · k! · (n− j − k)! · (n− j − k)!

=

(
2n

n

)
4−n

∑
j, k∈N0
j+k≤n

[
1

3n

(
n

j, k, n− j − k

)]2

≤
(

2n

n

)
4−n max

x, y z∈N0
x+y+z=n

1

3n

(
n

x, y, z

)
=

(
2n

n

)
4−n

1

3n

(
n

x0, y0, z0

)
,

where (x0, y0, z0) is (m,m,m) when n = 3m, (m+ 1,m,m) when

n = 3m+1, a (m+1,m+1,m) when n = 3m+2 (here m ∈ N0) −
Exercise 13. On the first line we counted as in the previous proof: j

is the number of steps of the walk to the right, k is the number of its

steps up, and n− j− k is the number of its steps back. The second

line represents a simple algebraic rearrangement. On the third line,

we took advantage of the fact that according to the multinomial

expansion of 3n = (1 + 1 + 1)n the numbers [. . . ] sum up to 1, and

we used Exercise 14. On the fourth line, we found the maximum

value of the trinomial coefficient with the help of Exercise 13.

By Stirling’s formula, we have estimates(
2n

n

)
� 4n

n1/2
and

(
n

x0, y0, z0

)
� 3n

n
.

So
b2n
62n
� n−1/2 · n−1 = n−3/2
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and for some constant c > 0,

B(1) =
∑
n≥0

bn
6n

=
∑
n≥0

b2n
62n

< c
∞∑
n=1

1

n3/2
< +∞ ,

which we needed to show. 2

Exercise 13 Prove that for a, b ∈ N0 with a ≥ b + 2,

1

a! · b!
≥ 1

(a− 1)! · (b + 1)!
.

Exercise 14 Let A, a1, . . . , an ≥ 0 be real numbers such that

ai ≤ A and a1 + · · · + an = 1. Then

n∑
i=1

a2i ≤ A .

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by

the end of the coming Sunday solutions to the Exercises 1, 6, 10,

11 and 14.
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