MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2024/25
lecturer: Martin Klazar

LECTURE 6 (March 26, 2025)
APPLICATIONS OF BAIRE'S THEOREM:
NON-DIFFERENTIABLE CONTINUOUS FUNCTIONS,
TRANSCENDENTAL GROWTHS OF PERMUTATIONS

e Non-differentiable continuous functions. Let I = |[0,1]. By
C(I) we denote the set of all continuous functions from I to R.
Recall that for x € R and ¢ > 0,

Pz,0)=(x—0,z+0)\{z}=(x—9, z)U(z, x+ )
is the deleted d-neighborhood of x. We prove the following theorem.

Theorem 1 (wild functions exist) There exists a function
f in C(I) such that for every x € I and every § > 0,

sup ({‘f(y;:ii(x) .y € Pla, 5)m1}) — 100,

Recall that f: I — R is differentiable at « € [ if it has a finite
derivative f'(z) € R.

Exercise 2 The function f in Theorem 1 is continuous on I
but is not differentiable at any point of I.

e Four lemmas. We prove Theorem 1 with the help of four lemmas.

Lemma 3 (1st lemma) If f € C(I) has the property that for
every xr € I,

oo {‘f(y) — /()]

y X

yEI\{x}}>—+oo
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then f has the property in Theorem 1. Hence the parameter ¢
in Theorem 1 1s superfluous.

Proof. We assume that f € C(I) has for every x € I the stated
property. The set

Q(z, 8) = I\ Uz, §) = [0, 1]\ (z — 8, z + )

is compact for every x € I and every 6 > 0 (Exercise 4). Let
M (zx,d) be the maximum value of the continuous function

Q. 6) 3y |(fy) — f(@)/(y —2)| > 0.

For every given x € [ and 0 > 0, by the assumption there is
ay € I\ {x} such that

|ﬂw—f@)
y—a

> M(z,0) .

But then y € Q(x,9), thus y € P(x,d) and wee see that f has the
property in Theorem 1. O
Exercise 4 Show that the set Q(x,0) is campact.

Exercise 5 Why is the function y — ‘f } continuous?.

Recall that for any set X, the mﬁmty—norm

[flloe = sup({[f(@)|: = € X})
on the set B of bounded functions f: X — R makes B a MS

(B, [|f = gll)-
Exercise 6 Show that this is a MS.
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Lemma 7 (2nd lemma) Let (M,d) be a MS, (x,) C M be
a sequence with limx, = xog € M and let (f,), fo: M — R,
be a sequence of functions converging in the norm || - ||« to
a continuous function f: M — R. Then

lim fn(xn) - f(xO) :
Proof. By the triangle inequality,

For a given € > 0, we can make the first | - | on the right side < §
for every n > ng due to the assumption that || f, — f|lcc — 0. The
same holds for the second | - | on the right side for every n > ny,
due to Heine’s definition of continuity of f at the point xy. Hence
n = max({no, ni}t) = [folzn) = flzo)| <5+5=¢ :

A broken line going through the points (ag, by), (a1,b1), - ..,
(a,br) in R? in this order, where ag < a; < -+ < ay, is the
function f: [ag, ax] — R which is on every interval |a; 1, a;], i =
1,2,...,k, defined by

f(z) = (bz' - bz’—l)(ﬂf - a@'—l) 4 by
a; — aj—1
(thus f(a;—1) = b;—1 and f(a;) = b;). Its graph on the interval
la;_1, a;] is the segment joining the points (a;_1,b;—1) and (a;, b;).
We call these segments just segments.

Exercise 8 Fvery broken line is a continuous function.

The slope of a plane line given by the equation y = ax + b is the
number a. The slope of a segment is the slope of the line extending
the segment. The secant (line) of a function f: M — R, M C R,
is a line going through two distinct points on the graph of f.
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Lemma 9 (3rd lemma) For every € > 0 and every function
f € C(I) there is a function g € C(I) and a constant M > 0
such that

— g(z)
— T

<M

() [|f=glloo < & and (i), y € I x#y:»\

— every f € C(I) can be arbitrarily closely approximated by
a function g € C(I) that has secant lines with bounded slopes.

Proof. Let f € C(I) and let an € > 0 be given. Since the interval
I is compact, the function f is uniformly continuous (Exercise 10).
Hence for every sufficiently large m and every ¢ = 0,1,...,m it

holds that

s <= ) - f@)] D - f@)] <5

We draw through the points (i/m, f(i/m)), 1 =0,1,...,m a bro-
ken line g. For g the above implication holds too and with the
same m (Exercise 11). Thus

Ve el(|f(z)—glz) <e/2+¢e/2=¢)

(Exercise 12) and g has property (i). By Exercise 13 we have that
for every two distinct numbers x,y € I,

‘g(y) —g(x)
y—

where s is the largest, in absolute value, slope of a segment of the

< s

broken line g. Hence g has also property (ii). O

Exercise 10 Why is any f € C(I) uniformly continuous?



Exercise 11 Show that the displayed tmplication holds for the
broken line g.

Exercise 12 Prove the displayed inequality that V... .
Exercise 13 Prove the inequality - -- < s.

Lemma 14 (4th lemma) For everye >0 and T > 0 there is
a function g € C(I) such that

(1) lgllee < & and (i) Vo € I3y € I\{x}: '9<y) —9@)| g
y—x
— there is a continuous and || - ||s-small function g, defined on

I, such that through every point of its graph goes a secant line
with a large slope.

Proof. Let ¢ > 0 and T" > 0 be given. We take a large even m € N
such that 2—7:,’;‘5 > T, take the m + 1 points

(i/m, (e/3)1—(-1)") €eR? i=0,1....,m,

in the plane and draw through them a broken line g. It joins (0, 0)
and (1, 0) and has m/2 hills, each with height % and base width =.
Thus ||g]|c = % < € and (i) holds. Let u be a point on the graph
of g. We lead through it the secant line extending the segment
containing w (if w lies in two segments, we choose any of them). Its

slope| > T because both sides of any hill have [slope| = ?j—/w?z =

22 > T'. We satisfied (ii) too. -

e Proof of Theorem 1. We show that there is a continuous function
f: I — R that is not differentiable at any point of I.



Proof of Theorem 1. For n € N we define sets

Ay={fecC)|3zelVyel\{z} (ML) <n)} .

We show that every set A, is a sparse subset of the MS

(C), If = gll)

and by this we will be done. Indeed, by Proposition 17 below this MS
is complete and therefore by Baire’s theorem there exists a function

fecm\JAa..

Thus f is continuous and has the property described in the first
Lemma 3 and therefore, by this lemma, has the property in Theo-
rem 1 and by Exercise 2 the function f is not differentiable at any
point of 1.

We show that every set A, C C(I) is closed and contains no
ball, i.e., that for every ball B(f,r) in the MS, B(f,r) ¢ A,. It
follows from this that A, is a sparse set (Exercise 15).

We prove that A, is closed by showing its closedness to limits.
Let (fi) C A, be a sequence with limg o fr = f € C(I); we show
that f € A,. Since f, € A, there is a number x; € I such that
for every y € I\ {zx},

fily) — i) | _

Yy — Tk N

We know from Mathematical Analysis 1 that (z) has a convergent
subsequence with a limit in 1. To simplify notation, we assume that
already limy o = xg € 1. For every y € I\ {zo} we have, by
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the property of the point x; and the second Lemma 7, that
fely) — Julaw)| | f(y) — f(@o)

Y — Tk Yy — o
(non-strict inequalities are preserved in limits). The number z the-
refore witnesses that f € A,, and A, is a closed subset of the MS.

[t remains to find in the given ball B(f,r) C C(I) a point (i.e.,
a function) g € B(f,r) \ A,. We define it as g = g1 + go where we
get the functions g; and g» using the third and fourth Lemma 9 and

n > lim

k—o00

14, respectively. First we use Lemma 9 and get a function g, € C(1)
and a constant M > 0 such that || f —gi1|/« < 5 and that all secants
of the graph of g; have slope in absolute value < M. Then we use
Lemma 14 and get a function g, € C(I) such that ||gs||- < 5 and
that through every point in the graph of go there goes a secant line
with slope in absolute value > M + n. By the triangle inequality,

If = gllse <N = g1lloc + lgalloc <5+5=7

and g € B(f,r). Let x € I be arbitrary. By the property of the
function g, we take a y € I\ {x} such that \%\ > M +n.
Then

'g(y) —g(x) _ 92(y) — go(x) X 91(y) — gi1(x)
y—zT y—z y—=
N 92(y) — go() B 91(y) — g1(z)
Yy—x Yy—x

> (M+n)—M=n

and g € A,,. On the first line we used the definition of g, on the se-
cond the inequality from Exercise 16 and on the third the properties
of the functions ¢g; and gs. O



Exercise 15 Prove that every closed set X (in a MS) with
empty interior (i.e., X contains no ball) is sparse.

Exercise 16 Prove that for every two real numbers a and b,
o — b > |a| —[b] .

o Completeness of the MS of continuous functions with the

infinity-norm metric.

Proposition 17 The metric space

(C), If = gll)

15 complete.

Proof. Let (f,) C C(I) be a Cauchy sequence in this MS; i.e.,
Ve>03m(n,n' >m=|fu— fulle <e).

Then for every x € I the sequence (f,,(x)) C R is Cauchy, therefore
convergent, and we can define

fla) = lim fu(z).

Thus we have a function f: I — R with the property that poin-
twisely f, — f. Let us prove the uniform convergence, i.e., that
|f — fallo = 0. Let an x € I and an € > 0 be given. We take
an m (it is independent of x) such that the above displayed Cau-
chy condition holds with 5. Then we take a k& > m such that
|fu(z) — f(z)| <5 Thusn > m =

[fu(@) = f(@)] < [fulz) = fel@)] + [fulz) = fl@)| <5+5=¢
and lim f,, = f in this MS.



[t remains to show that f is continuous (i.e., it is an element of
this MS). Let an xy € I and an € > 0 be given. We take an ng such
that

n>ng=|f— fullo S%'

We take a & > 0 such that
€ Uz, 0) NI = |fuy(®) — fro(o)| <5

(we use the continuity of Jno at xg). Then Va € Ul(xg,0) N1,
|f(x) — f(xo)| is at most

’f(l‘) - fno(x)’ + |fn0(33) - fno(xO)’ < %—i— % =€
— [ is continuous at xy. 0

Now the proof of Theorem 1 is complete.

o An application of Baire’s theorem in enumeration of permu-
tations. Form <mnin N = {1,2,...} and two permutations (i.e.,
bijections) 7: [m] — [m] and p: [n] — [n] we write 7 < p, and say
that 7 ¢s contained in p, if there exist numbers 11 < 79 < - -+ < 1,
in [n] such that

Vi, k€ m) (x(j) < wl(k) <= pli) < plin)) -

Let S be the set of all finite permutations 7: [n] — [n] for n running
in N and let S,, C S be the (nl-element) set of permutations of [n].

Exercise 18 Show that (S, <) is a non-strict partial order.

We say that a set X C § is a permutation class if for every two
permutations 7 and p,

TXpeX=>mecX.
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In the last cca 20 years, many results on enumeration of permutation
classes X, i.e., on the counting functions of the form

n— | XNS,

(|A| denotes the cardinality of a finite set A), were obtained. A basic
one is the next theorem.

Theorem 19 (A. Marcus and G. Tardos, 2004) Let X be
a permutation class. Then

X#S8S=3c>1Vn(|XnNS,| <.

In words, any permutation class, with the exception of the class
of all permutations, grows only at most exponentially.

Exercise 20 Let m € Sy be the identical permutation (m(1) = 1,
7(2) =2) and let X be any permutation class such that m & X.
Show that then | X NS,| <1 for every n.

By the Marcus—Tardos theorem, for every permutation class X
different from & one can define its finite growth rate

¢(X) = limsup | X N S,[V" (€ [0, +00)).

n—oo

For example, it is known that c({p € S | p ¥ 7}) = 4 for every

m € S3. In fact,
1 /2
X NS, = ( n)
n+1\n

for every n for any of these six permutations classes X.

For some time there was a conjecture that every growth rate of
a permutation class is an algebraic number. It was refuted by the
following result.
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Theorem 21 (M. Albert and S. Linton, 2009) There is
a nonempty closed set

A C 0, +0)
such that A has no isolated point and every number in A is the
growth rate of a permutation class.

As we saw in the lecture before the last lecture, Baire’s theorem im-
plies that each such set A is uncountable. Thus we have uncountably
many growth rates of permutation classes, and (since the set of al-
gebraic numbers is countable) almost all of them are non-algebraic.

Corollary 22 (transcendental growths) Hence there exist
non-algebraic growth rates of permutation classes.

Exercise 23 How does it exactly follow from Baire’s theorem
that the above set A is uncountable?

THANK YOU FOR YOUR ATTENTION!

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)
by the end of the coming Sunday solutions to the Exercises 2, 4, 15,
20 and 23.
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