MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2024/25
lecturer: Martin Klazar

LECTURE 3 (March 5, 2025) CONTINUITY AND
COMPACTNESS. THE HEINE-BOREL THEOREM.
CONNECTEDNESS. FTALG

e C'ompactness and continuity. In the next exercise you verify that
restriction of a continuous function to a subspace is a continuous
function.

Exercise 1 Let (M,d) and (N,e) be MSs, X C M be a non-
empty set and f: M — N be a continuous function. Then the
restriction

fIX: X =N, X>a— f(a) €N,

defined on the subspace (X, d) is a continuous function.

In the last lecture, we met two equivalent versions of continuity
of functions: (i) the classical e-§ form and (ii) the Heine definition
(based on limits of sequences). Now we introduce the third equiva-
lent form of continuity, so called topological continuity.

Proposition 2 (topological continuity) Let f: M — N be
a map between MSs (M, d) and (N, e). Then, with OS standing
for “open set”,

f 1s continuous <=

VOSACN (f[Al={z e M| f(x) € A} C M is an OS) .



Proof. The implication =. Let f be continuous in the -0 sense,

A C N be an open set and a € f~![A]. So f(a) € A and there
exists an € > 0 such that B(f(a),e) C A. So there exists a § > 0
that

f(Bla, 6) € B(f(a), €) C 4.

Hence B(a,d) C f~![A] and f~![A] is an open set.
The implication <=. Let f be continuous in the topological sense,
a € M and € > 0. Since the ball B(f(a),e) C N is an open set,
f7UB(f(a),e)] is an open set. Since a € f~'[B(f(a),e)], there
exists a § > 0 such that B(a,d) C f~[B(f(a),e)]. Thus
f[Bla, 0)] C B(f(a), €)

and f is continuous in the -0 sense. O

Exercise 3 Prove this equivalence with closed sets instead of
open sets.

We generalize the topological definition of continuity to subspaces.

Exercise 4 Let (M,d) and (N,e) be MSs, X C M and let
f: X — N. Then (OS is again an “open set”)

f is a continuous map defined on the subspace (X,d) <=
<~ YVOSACNIOSBCM(f'A=XnB).

We show that the continuous image of a compact set is compact.

Proposition 5 (compact image) Let (M, d) and (N, e) be MSs,
X C M be a compact set and

f: X—>N
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be a continuous function. Then the image f|X] C N is a com-
pact set.

Proof. Let (a,) C f|X] be an arbitrary sequence. We take the
sequence (b,) C X with f(b,) = a, and select a convergent sub-
sequence (b, ) with lim b,, = b € X. By Heine’s definition of
continuity;,

lim a,,, =lim f(b,,) = f(b) € f[X].

We have obtained a convergent subsequence of the sequence (ay,)
with limit in f[X]. So f[X] is compact. O

Exercise 6 Find an example showing that the inverse i1mage
of a compact set by a continuous function need not be compact.

Another useful property of compact sets is the following.

Proposition 7 (continuity of inverses) Let
f: X—N

be an injective continuous map from a compact set X C M in
a MS (M,d) to a MS (N, e). Then the inverse map

LX) = X
1S continuous.

Proof. We use the version of topological continuity in Exercise 3.
We need to prove that for every set A C X that is closed in the
subspace (X, d), the inverse image (f~1)7'A] = f[A] C f[X]
by the map f~! is closed in the subspace (f[X],e). By one of the
exercises in the last lecture we know that A is compact (it is a closed
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set in a compact space). By the previous proposition, we know that
flA] is a compact set in the subspace (f|X],e). By a proposition
in the last lecture, f[A] is closed in this subspace. O

e Homeomorphisms of MSs. A map f: M — N between MSs
(M, d) and (N, e) is their homeomorphism if f is a bijection and
if both f and f~! are continuous. If there is a homeomorphism
between (M, d) and (N, e), these spaces are called homeomorphic.

Exercise 8 Describe the homeomorphism between the Eucli-
dean spaces (0,1) C R and R.

Exercise 9 Consider the Euclidean spaces I = |0,27) C R and
the unit circle

S={(z,y) eR*| 2 +y* =1} C R*.

Is the mapping I > t + (cost,sint) € S a homeomorphism
between them?

Exercise 10 Let (M,d) and (N,e) be homeomorphic MPs. Is
it true that M 1s compact <= N is compact, and that M 1s
bounded <= N s bounded?

e The Heine—Borel theorem. This theorem characterizes compact
sets in MSs by means of open sets. We say that a subset A C M of

a MS (M, d) is topologically compact if for every system of open
sets {X; | ¢ € I'} in M it holds that

UXZ-DA#HﬁnitesetJC[(UXiCA).
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One says that “every open covering of A has a finite subcovering” .
We prove that this definition of compactness is equivalent to the
original definition.

Theorem 11 (Heine—Borel) A set A C M in a metric space
(M, d) is compact if and only if it is topologically compact.

Proof. Without loss of generality, A = M (Exercise 12).
We prove the implication =. Let (M, d) be a compact MS and

M=|]Jx
icl
be its open covering (so every set X; is open). We find a finite
subcovering in the system

{X;|iel}.

First we prove that

V5>OHﬁM@%&%CA4(LJBm¢ﬂ—NQ.

aGSg

[f this were not the case, there would exist a dg > 0 and a sequence
(a,) C M such that m < n = d(a,, a,) > dp. In contrary with the
assumed compactness of the set M this sequence has no convergent
subsequence. Indeed, if (we negate the above statement about § and
Ss) there exists a dp > 0 such that for every finite set S C M one
has that

M\UaESB(a7 50)7&0)7

then —if we already have defined points aq, ao, ..., a, satistying
that d(a;,a;) > o for every 1 < i < j < n—we take a,4; €
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M\ U._, B(ai, dy) and a4+ has from each point aq, as, ..., a,
distance at least dp. Thus we define the whole sequence (ay,).

For contrary we assume that the above open covering of M by
the sets X; has no finite subcovering. We argue that it follows that
(the finite sets Sy are defined above)

VneN3b, €5y, Viel(Bb,l/n)¢X,).

If this were not the case, then (negating the previous statement)
there would exist an ng € N such that for every b € S}y, there
exists a 4, € I such that B(b,1/ng) C Xj,. But then, since M =
Ub€51/n0 B(b,1/ny), the indices give J = {3, | b € Sy} C I in
contrary with the assumption on finite subcovering of the set M.

The displayed claim on n and b, is therefore valid and we have
the sequence (b,) C M. By the assumption it has a convergent
subsequence (b, ) with b = lim by, € M. Since the X; cover M,
there exists a 7 € [ such that b € X;. Due to the openness of X
there exists an r > 0 such that B(b,r) C X;. We take n € N
so large that 1/k, < r/2 and d(b,by,) < r/2. For every x €
B(by,, 1/k,) then, by the triangle inequality, we have that d(x, b) <
d(zx,by, )+ d(by,,b) <r/2+1/2=r. Hence

B(by,, 1/k,) C B(b, r) C X, ,

in contrary with the above property of points b,. The assumption
that finite subcovering does not exist leads to a contradiction. Hence
the cover of M by the sets X;, ¢ € I, has a finite subcover.

We prove the implication <, which is easier. We assume that
every open covering of the set M has a finite subcovering, and we
derive from this that that every sequence (a,) C M has a conver-
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gent subsequence. We first assume that
Vbe M 3r,>0(M,={neN|a, € B(b, )} is finite)

and show that this assumption leads to a contradiction. Indeed,
from the covering M = |J,.,; B(b, 1) we would choose a finite
subcovering given by a finite set N C M and we would deduce
that there exists an ng such that n > ny = a, & Jycy B(b, 1)
because the set of indices | J,. v M, is finite (it is a finite union of
finite sets). But this is a contradiction because | J,.y B(b,rp) = M.
So the assumption does not hold and on the contrary it is true that

3be MVr>0(M,={n€N|a, € B(br)} isinfinite) .

Now we can easily select from (a,,) a convergent subsequence (ay,, )
with the limit b. Let the indices 1 < k1 < ko < -+ < kj, be already
defined such that d(b,ay,) < 1/i for i = 1,2,...,n. The set of
indices My (,+1) 1s infinite, so we can choose a k41 € N such that
kps1 > ky and ko € My jg11). Then also d(b, ay,,,) < 1/(n+1).
We get a subsequence (ay, ) of (a,) converging to b. O

Exercise 12 Why can one take in the previous proof A= M?¥?

o Connected sets and MSs. The subset X C M in a MS (M, d)
is clopen if it is at the same time open and closed. For example,
the sets ) and M clopen. The space M is connected if it has no
nontrivial (different from () and M) clopen subset. Else, if M has
a clopen subset X € M with X # 0, M, we say that M is dis-
connected. A subset X C M is connected, or disconnected, if the
subspace (X, d) is connected, or disconnected.

Exercise 13 Which finite sets X C R wn the Euclidean space
R are connected?



Exercise 14 Is the set X C R? in the Euclidean plane R?,
given as

X = ({0} x [-1, 1) U{(¢, sin(1/t)) |0 <t < 1},
connected?

Let (M, d) be a MS and X, A, B C M. We say that the sets A
and B cut the set X if A and B are open and

(X CAUBIANXNA#D#AXNB)AN(XNANB=0).

Exercise 15 Prove that X C M 1s a disconnected set in a MS
(M, d) if and only if there are sets A, B C M that cut X.

Exercise 16 Let (M,d) be a MP and A, B C M be connected
sets such that AN B # (). Prove that then the set AU B is
connected.

e The Fundamental Theorem of Algebra (FTAlg). We prove it
using compact and continuous sets in the MS C.

Theorem 17 (FTAlg) Every non-constant complex polynomial
has a root, that is,

(nzl)/\(a()aa’la"'7a’n€(c)/\(a’n7éo):>
= JaeC(X a0/ =0).

However, we still have to derive some results on connected sets.
From the point of view of compact sets, we are ready: the MS
C = (C, |[u—v]|) is actually the Euclidean space (R?, e5) and X C C
is compact iff X is closed and bounded.

We regard the real axis R as contained in C and first we prove
that every interval [a,b] C R C C is a connected set in C.
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Theorem 18 (intervals are connected) Let a,b € R with
a < b. Then the interval [a,b] (C C) is a connected set.

Proof. For contrary let A, B C C be open sets cutting [a, b] (Exer-
cise 15). We can assume that @ < b and that a € A and b € B
(Exercise 19). We consider the number

c=sup({z € [a, b] | x € A}) € [a, b] .

Then c € AUB. If ¢ € A, then ¢ < b. It follows from the openness
of A that every ¢ with ¢ < ¢ < b and sufficiently close to ¢ lies in A.
But this contradicts that ¢ is an upper bound of the set A N a, b).
If c € B, then a < c. It follows from the openness of B that every
¢ with a < ¢ < ¢ and sufficiently close to ¢ lies in B, that is,
outside of A. But this contradicts the fact that ¢ is the smallest
upper bound of the set A N |a, b)]. O

Exercise 19 Why can we assume thata € A and b € B?
Exercise 20 Prove the equivalence
X C R is connected <= X 1s an interval .

Connectedness is preserved by continuous functions (like com-
pactness).

Theorem 21 (continuity and connectedness) We assume

that f: X — N is a continuous map from a connected set
X C M in aMS (M,d) to another MS (N, e). Then the image

fIX]={f(z)|re X} CN

18 connected.



Proof. We deduce from the disconnectedness of f|X] the discon-
nectedness of X. Let the open sets A, B C N cut the set f[X]. By
Exercise 4 there exist open sets A’, B C M such that

fHA=XNA and fB]=XNB.
It is easy to see that the sets A" and B’ cut the set X . It is therefore

disconnected. O

Now we easily prove that the complex unit circle
S={2ze€C||z]=1} cC

is connected. We could take the continuous function f(t) = cost +
isint: I =1[0,27] — C. Then

S=fll.

and S is connected by the two previous theorems. However, we use
the transcendental functions sin and cos. We can avoid them by
replacing f with continuous functions f*, f~: I = [—-1,1] — C,
defined by

fft)=t+iv1—t2 and f~(t)=t—i/1—12.
Then
S=fruu ],
and S is connected by the two previous theorems and Exercise 16.
We now turn to the first of two steps in the proof of FTAlg. We

prove that C contains all n-th roots for n € N. We again avoid sine
and cosine. Two special cases of this fact are left as exercises.

Exercise 22 Prove that for every nonnegative x € R and every
n € N there exists a nonnegative y € R such that y" = x.
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Exercise 23 (square roots in C) Let a + bi € C. Then, for
appropriate choice of signs in

\/\/a2+62—|—a \/\/a2+62—a
c==% and d =+ :
V2 V2

it holds that (c+di)* = a+bi. What are these signs? How would
you derive these formulas? (Checking their correctness is easy.)

Theorem 24 (nth roots in C) C contains all n-th roots,
VueCVneN3IveC (v =u).

We prove it next time. Then we also complete the proof of FTAlg
in the second step using compact sets.

THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send me (klazar@kam.mff.cuni.cz) by

the end of the coming Sunday solutions to the Exercises 4, 9, 13,
14 and 23.
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