MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2024/25
lecturer: Martin Klazar

LECTURE 2 (February 26, 2025) OSTROWSKI'S
THEOREM. COMPACT METRIC SPACES.

e Ostrowski’s theorem. On any field ' we have the trivial norm.
It is a function || - || with ||0g|| = 0 and ||x|| = 1 for x # Op.

Exercise 1 Prove that a trivial norm 1s a norm.

From the usual absolute value | - | on Q, R and C, we get many
other norms by exponentiation.

Exercise 2 Prove that for any ¢ > 0, |-| is a norm (on Q, R,
and C) if and only if ¢ < 1. We will call this norm the modified
absolute value.

For @« € Q and a prime p, the canonical p-adic norm || - ||, is

defined by
—ordy(a)

ledl, = p
— in the general p-adic norm | - |, we set ¢ = 1/p.
Exercise 3 Let M = {2,3,5,7,11,... } U{oo} and || - ||oc = | - |

(ordinary absolute value). Prove that for every nonzero number
a € QQ the product formula

1T llell, =1
peM

holds.



Exercise 4 Let ||-|| be a nontrivial norm on the field Q. Prove
that 3n € N (n > 2 A|n|| #1).

Exercise 5 Prove that for every two coprime numbers a,b € Z
there exist numbers c,d € 7 such that

ac+db=1.

Theorem 6 (A. Ostrowski, 1916) Let || - || be a norm on
the field of rational numbers Q. Then one of the following three
cases 0ccurs.

1. It is a trivial norm.
2. There exists a real c € (0,1] such that ||z| = |=|°.

3. There exists a real ¢ € (0,1) and a prime number p such

that ||z|| = |z, = @),

Modified absolute values and p-adic norms are therefore the
only non-trivial norms on the field of rational numbers.

Proof. Let || - || be a nontrivial norm. By Exercise 4 there exists
an n € N\ {1} such that ||n|| # 1. Two cases occur.

1. There exists an n € N such that ||n|| > 1. Let ng be the
smallest such n. Apparently ng > 2 a

1<m<ny=|m| <1. (1)
There is a unique real number ¢ > 0 such that
In0]| = ng - (2)
Any n € N expands in base ny:

n:ao+a1n0+a2n%+~-+a5ng where
a;, s € Ng, 0 <a; <ng and as #0 .

2



For ng = 10 this is the usual decadic notation, like 2024 = 2-10° +
0-10%+2- 10" +4-10% So

|In]] = Hao—l—amo—l—agn%Jr---+a3n8H

A-ineq. and multipl. of || - ||
<

> 5o llagll - lInoll’

eq. (1) and (2) 5 je e 00 "
< ijo ny < ng’ s (1/n)

S
ng<n

< n‘C’ where C'= 3% (1/ng)" .

Hence
Vn e Ny (||n]] < Cnf) . (3)

This bound holds in fact even with C' = 1. For each m,n € N,
multiplicativity of the norm and inequality (3) give

In|™ = [I]n™]] < C'(n™)" = C(n)" .

We take the m-th root and get that ||n| < CY™nc. For m — oo
we have C'/™ — 1. So indeed

Vn € No (|ln]l <nf). (4)

We similarly derive the converse inequality ||n|| > n¢ n € Nj.
For every n € N the above expansion of n in base ng gives that

ngtt >n>nj .
By the A-inequality;,
Inoll*** = lIng ™I < [lnl + [Ing™ —nl| -
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(2) and (4)
Inll > ol = lng™ —nll > g = (g =)
"I (erl)e | (s+1)c 1\°
Z N —(ng" =)t =mng (1_< _n_o) )
n8+1>n ¢
> n°C’ where C”zl—(l—nio) > 0.

The trick with the m-th root gives again
Vn e Ny (||n]] > n) .

Hence

Vn e N (||n]| =n°) .

From multiplicativity of the norm || - || we get that ||x|| = |=|¢ for
any x € Q. By Exercise 2, ¢ € (0,1]. Thus case 2 of Ostrowski’s
theorem holds.

2.Vn € N one has ||n|]| <1 and I3n € N with ||n]| < 1. Let ng
be minimum such n; again ng > 2. We claim that ny = p is a prime
number. Indeed, if we could express ng = ning with n; € Z and
1 < nq,ny < ng, the contradiction

1> [|nof| = [lnanz|| = [l - fnof = 1-1=1

follows (we used multiplikativity of norms and that ||m|| = 1 for
any m € N with 1 < m < ng). We show that every prime number
q with ¢ # p has the norm ||¢|| = 1. For the contrary let ¢ # p be
another prime number with ||¢|| < 1. We take a large m € N such
that ||p[|™, ||¢]|™ < 1. By Exercise 5 there are integers a and b such
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that aq™ + bp™ = 1. Taking norms we get that

1 1
L= {100 = llag"™ 05" | < llall-lall™+ bl o™ < 15415 =1

which is a contradiction; we used the triangle inequality, multipli-
cativity of norms, and the fact that now ||a|| < 1 for every a € Z.

Thus ||¢|| = 1 for every prime number ¢ # p. From this, multipli-
cativity of norms and prime factorization of any non-zero fraction
x we get the expression

dy(
el = | T e =TT el = o
4=2,3,5, ... q=2,3,5, ...
= @%@ where ¢ = ||p|| € (0,1) .
Also [|0]] = %) = ¢ = 0. We are in case 3 of Ostrowski’s
theorem. O

The preceding proof is taken from the book by Neal Koblitz,

p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-
Verlag, New York, 1984.

This book contains lot of information about the p-adic norm || - ||,
and related p-adic analysis.

o Compact sets in metric spaces. We review limits of sequences
in MSs. Let (M,d) be a MS, (a,) C M be a sequence of points
in it and @ € M be a point. We say that (a,) has the limit a (in
(M,d)) if

Ve Ing (n>ny = dlay, a) <e) .



From now on € > 0 is a real number and ng,n € N. We write that
lim a, = a or lim, ., a, = a. If the sequence (a,) has a limit, we
say that it is convergent, otherwise it is divergent.
Let (M,d) be a MS and X C M, for example X = M. We say
that the set X is compact if
V(ay) C X 3(am,) Ja € X ( lim a,, =a).

n—0o0

In words: every sequence of points in the set X has a convergent
subsequence with limit in X. The MS (M, d) is compact when the
set M is compact.

The Bolzano—Weierstrass theorem states that on the real axis,
i.e., in the MS (R, |z — y|), every closed and bounded interval X =
la,b] is a compact set. We give a few examples of compact sets
and compact MSs.

Exercise 7 In every MS every finite set is compact.

Exercise 8 Is the real axis (with the metric |x —y|) a compact
MS?

Exercise 9 Which other intervals on the real axis besides |a, U]
are compact sets?

Exercise 10 Let X = [a,b] X [c,d] be a rectangle in the plane,
that is, in the Euclidean space (R?, ey). Prove that X is compact.

Exercise 11 Let (M,d) be MS and A, B C M. Which of the



following implications holds?

A and B are compact = AU B is compact
A and B are compact = AN B is compact
A C B and B is compact = A is compact
A and B are compact = A\ B is compact

e Fxtrema and compact sets. We begin with continuous maps
between MSs. Let (M, d) and (N, e) be MSs and f: M — N be

a map between them. We say that it is continuous in the point
ac M it

Ve3dVae e M (d(z, a) <d=e(f(z), f(a) <e).

Here 6 > 0 is a real number. A map f is continuous if it is
continuous in every point a € M.

Exercise 12 Let f: M — N be a map between MSs and a € M
be a point. Prove Heine’s definition of continuity:

f 1s continuous in a <
— V(a,) C M (lim a, = a = lim f(a,) = f(a)) .

Theorem 13 (attaining extrema) Let (M, d) be a MS,
fM—R

be a continuous function from M to the real axis, and X C M
be a nonempty compact set. Then

Ja,be X Vo e X (f(a) < f(z) < f(b)) .

Thus f attains on the set X both the smallest value f(a) and
the largest value f(b).



Proof. First we show that f[X]| = {f(x) | x € X} is a boun-
ded subset of R. If f[X] were not bounded from above, we could
take a sequence (a,) C X with lim f(a,) = 400, i.e., such that
Ve Ing(n > ng = fla,) > ¢). By the assumption, (a,) has
a convergent subsequence (a,, ) with lim a,, = a € X. By the
continuity of f in a and Exercise 12, lim f(a,,,) = f(a) € R. But
this is a contradiction because lim f(a,,,) = +00. Boundedness of
f[X] from below follows in a similar way.

Thus we define the real numbers A = inf(f[X]) and B =
sup(f[X]). By the definition of infima, there is a sequence (a,) C X
such that lim f(a,) = A. By the assumption, (a,) has a convergent
subsequence (@, ) with lim a,,, = a € X. By the continuity of f in
a and Exercise 12, lim f(a,,,) = f(a). Since subsequences preserve
limits, lim f(a,,) = A. Thus f(a) = A and for every x € X

fla) =A< f(z)

because A = inf(f[X]). We produce the element b € X in a similar
way. O

e Products of metric spaces. For the MSs (M, d) and (N, e), we
define their product (M x N, d x e) so that M x N is the Cartesian
product of the sets M and N and the d X e metric on it is given by

(d x e)((a1, as), (b1, b)) = \/d(a1, b1)2 + e(ay, by)? .
Exercise 14 Prove that the product of two MSs s a MS.

Exercise 15 Prove that the product of two Euclidean MSs

(R™, e,,) and (R", e,)



is (except for a formality in notation) the Fuclidean MS
(Rm+n7 em—i-n) :

What is the “formality”?

e Characterization of compact sets in Fuclidean MSs. We de-
fined the ball B(a,r) in a MS last time. A set X C M in a MS
(M, d) is open if

Vae X 3r (Bla,r) C X) .

Here r > 0 is a real number, the radius of the ball B(a,r). X is
closed if M\ X is open. X is bounded if

Jae M 3r (X C B(a, 1)) .

The diameter of the set X is, for V' = {d(a,b) | a,b € X} C
[0, +00), defined as

sup(V) ... theset V is bounded from above and
+o0o ... theset V is unbounded from above .

diam(X) := {
Exercise 16 Prove that any set X 1is bounded if and only if
diam(X) < +o0.

Exercise 17 Prove that for any unbounded set X there is a sequence
(a,) C X such that m < n = d(ap, a,) > 1.

In the following two exercises we review basic properties of open
and closed sets in a MS.

Exercise 18 Let (M, d) be a MS. Then the following holds.
1. The sets ) and M are both open and closed.
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2. Any finite intersection of open subsets of M 1is an open set
and any finite union of closed subsets of M s a closed set.

3. Any union of open subsets of M is an open set and any
intersection of closed subsets of M s a closed set.

Exercise 19 Let (M,d) be a MS and X C M. Then

the set X 1is closed <—
— V(a,) CXVaeM(lima,=a=a€X).

Theorem 20 (on compactness) The following holds.

1. If X C M is a compact set in a MS (M, d), then X is closed
and bounded. The opposite tmplication does not in general
hold, by Exercise 22.

2. If (M,d) and (N,e) are two compact MSs, then their pro-
duct (M x N,d x e) is a compact MS.

Proof. 1. If X is not closed, then by Exercise 19 there exists
a convergent sequence (a,) C X such that lim a, = a € M \ X.
This sequence does not have a convergent subsequence with limit
in X, since each subsequence has limit a. When X is not bounded,
we easily construct a sequence (a,) C X such that m < n =
d(@pm, a,) > 1 (Exercise 17). This sequence clearly has no conver-
gent subsequence.

2. Let (an) = ((an1,an2)) be a sequence in the product MS.
We choose a subsequence (b,) such that (b, 1) has a limit b € M
in (M,d). From (b)) we select a subsequence (c,) such that (¢, )
has a limit ¢ € N in (N, e). It is not difficult to see that (¢,) is
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a subsequence of the sequence (a,) and that it has in the product
MS the limit
lim ¢, = (b, c) € M x N .
[

Exercise 21 Let (M,d) be a compact MS and X C M be a
closed set. Prove that X is compact.

Exercise 22 Let M be an infinite set and the metric d on it is
given as d(a,b) =1 for a # b and d(a,a) = 0. Show that (M, d)
15 a MS that is bounded and closed but not compact.

Theorem 23 (compact sets in R") In every Fuclidean MS
(R™, e,), X C R™ is compact if and only if it is bounded and
closed.

Proof. By the first part of the previous theorem, it suffices to prove
that every bounded and closed set X C R" is compact. From its
boundedness it follows that for a real number a > 0,

X CK=|-a,dad"=]—a,a x|—a,a] X x[-a,al CR".

The Euclidean MS (K e,) is compact by the Bolzano-Weierstrass
theorem, part 2 of the previous theorem, and Exercise 15. Clearly,
X is also closed in (K, e;,) (problem 24), so according to Exercise 21,
X is compact in (K e,) and therefore in (R",e,,) (Exercise 25). O

Exercise 24 Let (M,d) be a MS, A C B C M and A be a clo-
sed set in (M,d) = A is closed also in the subspace (B,d).

Exercise 25 Let (M,d) be a MS and A C B C M. Then A is
compact in (M,d) <= A is compact in the subspace (B, d).
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THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)
by the end of the coming Sunday solutions to the Exercises 5, 9, 11,
17 and 22.
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