
MATHEMATICAL ANALYSIS 3 (NMAI056)

summer term 2024/25

lecturer: Martin Klazar

LECTURE 2 (February 26, 2025) OSTROWSKI’S

THEOREM. COMPACT METRIC SPACES.

• Ostrowski’s theorem. On any field F we have the trivial norm.

It is a function ‖ · ‖ with ‖0F‖ = 0 and ‖x‖ = 1 for x 6= 0F .

Exercise 1 Prove that a trivial norm is a norm.

From the usual absolute value | · | on Q, R and C, we get many

other norms by exponentiation.

Exercise 2 Prove that for any c > 0, | · |c is a norm (on Q, R,

and C) if and only if c ≤ 1. We will call this norm the modified

absolute value.

For α ∈ Q and a prime p, the canonical p-adic norm ‖ · ‖p is

defined by

‖α‖p = p−ordp(α)

− in the general p-adic norm | · |p we set c = 1/p.

Exercise 3 Let M = {2, 3, 5, 7, 11, . . . } ∪ {∞} and ‖ · ‖∞ = | · |
(ordinary absolute value). Prove that for every nonzero number

α ∈ Q the product formula∏
p∈M

‖α‖p = 1

holds.
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Exercise 4 Let ‖ ·‖ be a nontrivial norm on the field Q. Prove

that ∃n ∈ N
(
n ≥ 2 ∧ ‖n‖ 6= 1

)
.

Exercise 5 Prove that for every two coprime numbers a, b ∈ Z
there exist numbers c, d ∈ Z such that

ac + db = 1 .

Theorem 6 (A. Ostrowski, 1916) Let ‖ · ‖ be a norm on

the field of rational numbers Q. Then one of the following three

cases occurs.

1. It is a trivial norm.

2. There exists a real c ∈ (0, 1] such that ‖x‖ = |x|c.

3. There exists a real c ∈ (0, 1) and a prime number p such

that ‖x‖ = |x|p = cordp(x).

Modified absolute values and p-adic norms are therefore the

only non-trivial norms on the field of rational numbers.

Proof. Let ‖ · ‖ be a nontrivial norm. By Exercise 4 there exists

an n ∈ N \ {1} such that ‖n‖ 6= 1. Two cases occur.

1. There exists an n ∈ N such that ‖n‖ > 1. Let n0 be the

smallest such n. Apparently n0 ≥ 2 a

1 ≤ m < n0 ⇒ ‖m‖ ≤ 1 . (1)

There is a unique real number c > 0 such that

‖n0‖ = nc0 . (2)

Any n ∈ N expands in base n0:

n = a0 + a1n0 + a2n
2
0 + · · · + asn

s
0 where

ai, s ∈ N0, 0 ≤ ai < n0 and as 6= 0 .
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For n0 = 10 this is the usual decadic notation, like 2024 = 2 · 103 +

0 · 102 + 2 · 101 + 4 · 100. So

‖n‖ = ‖a0 + a1n0 + a2n
2
0 + · · · + asn

s
0‖

∆-ineq. and multipl. of ‖ · ‖
≤

∑s
j=0 ‖aj‖ · ‖n0‖j

eq. (1) and (2)

≤
∑s

j=0 n
jc
0 ≤ nsc0

∑∞
i=0 (1/nc0)i

ns0≤n
≤ ncC where C =

∑∞
i=0 (1/nc0)i .

Hence

∀n ∈ N0

(
‖n‖ ≤ Cnc

)
. (3)

This bound holds in fact even with C = 1. For each m,n ∈ N,

multiplicativity of the norm and inequality (3) give

‖n‖m = ‖nm‖ ≤ C (nm)c = C (nc)m .

We take the m-th root and get that ‖n‖ ≤ C1/mnc. For m → ∞
we have C1/m → 1. So indeed

∀n ∈ N0

(
‖n‖ ≤ nc

)
. (4)

We similarly derive the converse inequality ‖n‖ ≥ nc, n ∈ N0.

For every n ∈ N the above expansion of n in base n0 gives that

ns+1
0 > n ≥ ns0 .

By the ∆-inequality,

‖n0‖s+1 = ‖ns+1
0 ‖ ≤ ‖n‖ + ‖ns+1

0 − n‖ .
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Hence

‖n‖ ≥ ‖n0‖s+1 − ‖ns+1
0 − n‖

(2) and (4)

≥ n
(s+1)c
0 − (ns+1

0 − n)c

n≥ns0
≥ n

(s+1)c
0 − (ns+1

0 − ns0)c = n
(s+1)c
0

(
1−

(
1− 1

n0

)c)
ns+1
0 >n

≥ ncC ′ where C ′ = 1−
(

1− 1
n0

)c
> 0 .

The trick with the m-th root gives again

∀n ∈ N0

(
‖n‖ ≥ nc

)
.

Hence

∀n ∈ N0

(
‖n‖ = nc

)
.

From multiplicativity of the norm ‖ · ‖ we get that ‖x‖ = |x|c for

any x ∈ Q. By Exercise 2, c ∈ (0, 1]. Thus case 2 of Ostrowski’s

theorem holds.

2. ∀n ∈ N one has ‖n‖ ≤ 1 and ∃n ∈ N with ‖n‖ < 1. Let n0

be minimum such n; again n0 ≥ 2. We claim that n0 = p is a prime

number. Indeed, if we could express n0 = n1n2 with ni ∈ Z and

1 < n1, n2 < n0, the contradiction

1 > ‖n0‖ = ‖n1n2‖ = ‖n1‖ · ‖n2‖ = 1 · 1 = 1

follows (we used multiplikativity of norms and that ‖m‖ = 1 for

any m ∈ N with 1 ≤ m < n0). We show that every prime number

q with q 6= p has the norm ‖q‖ = 1. For the contrary let q 6= p be

another prime number with ‖q‖ < 1. We take a large m ∈ N such

that ‖p‖m, ‖q‖m < 1
2. By Exercise 5 there are integers a and b such
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that aqm + bpm = 1. Taking norms we get that

1 = ‖1‖ = ‖aqm+bpm‖ ≤ ‖a‖·‖q‖m+‖b‖·‖p‖m < 1·1
2

+1·1
2

= 1 .

which is a contradiction; we used the triangle inequality, multipli-

cativity of norms, and the fact that now ‖a‖ ≤ 1 for every a ∈ Z.

Thus ‖q‖ = 1 for every prime number q 6= p. From this, multipli-

cativity of norms and prime factorization of any non-zero fraction

x we get the expression

‖x‖ =

∥∥∥∥ ∏
q=2, 3, 5, ...

qordq(x)

∥∥∥∥ =
∏

q=2, 3, 5, ...

‖q‖ordq(x) = ‖p‖ordp(x)

= cordp(x), where c = ‖p‖ ∈ (0, 1) .

Also ‖0‖ = cordp(0) = c∞ = 0. We are in case 3 of Ostrowski’s

theorem. 2

The preceding proof is taken from the book by Neal Koblitz,

p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-

Verlag, New York, 1984.

This book contains lot of information about the p-adic norm ‖ · ‖p
and related p-adic analysis.

• Compact sets in metric spaces. We review limits of sequences

in MSs. Let (M,d) be a MS, (an) ⊂ M be a sequence of points

in it and a ∈ M be a point. We say that (an) has the limit a (in

(M,d)) if

∀ ε ∃n0

(
n ≥ n0 ⇒ d(an, a) < ε

)
.
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From now on ε > 0 is a real number and n0, n ∈ N. We write that

lim an = a or limn→∞ an = a. If the sequence (an) has a limit, we

say that it is convergent, otherwise it is divergent.

Let (M,d) be a MS and X ⊂ M , for example X = M . We say

that the set X is compact if

∀ (an) ⊂ X ∃ (amn) ∃ a ∈ X
(

lim
n→∞

amn = a
)
.

In words: every sequence of points in the set X has a convergent

subsequence with limit in X . The MS (M,d) is compact when the

set M is compact.

The Bolzano–Weierstrass theorem states that on the real axis,

i.e., in the MS (R, |x− y|), every closed and bounded interval X =

[a, b] is a compact set. We give a few examples of compact sets

and compact MSs.

Exercise 7 In every MS every finite set is compact.

Exercise 8 Is the real axis (with the metric |x− y|) a compact

MS?

Exercise 9 Which other intervals on the real axis besides [a, b]

are compact sets?

Exercise 10 Let X = [a, b]× [c, d] be a rectangle in the plane,

that is, in the Euclidean space (R2, e2). Prove that X is compact.

Exercise 11 Let (M,d) be MS and A,B ⊂ M . Which of the
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following implications holds?

A and B are compact⇒ A ∪B is compact

A and B are compact⇒ A ∩B is compact

A ⊂ B and B is compact⇒ A is compact

A and B are compact⇒ A \B is compact

• Extrema and compact sets. We begin with continuous maps

between MSs. Let (M,d) and (N, e) be MSs and f : M → N be

a map between them. We say that it is continuous in the point

a ∈M if

∀ ε ∃ δ ∀x ∈M
(
d(x, a) < δ ⇒ e(f (x), f (a)) < ε

)
.

Here δ > 0 is a real number. A map f is continuous if it is

continuous in every point a ∈M .

Exercise 12 Let f : M → N be a map between MSs and a ∈M
be a point. Prove Heine’s definition of continuity:

f is continuous in a ⇐⇒
⇐⇒ ∀ (an) ⊂M

(
lim an = a⇒ lim f (an) = f (a)

)
.

Theorem 13 (attaining extrema) Let (M,d) be a MS,

f : M → R

be a continuous function from M to the real axis, and X ⊂M

be a nonempty compact set. Then

∃ a, b ∈ X ∀x ∈ X
(
f (a) ≤ f (x) ≤ f (b)

)
.

Thus f attains on the set X both the smallest value f (a) and

the largest value f (b).
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Proof. First we show that f [X ] = {f (x) | x ∈ X} is a boun-

ded subset of R. If f [X ] were not bounded from above, we could

take a sequence (an) ⊂ X with lim f (an) = +∞, i.e., such that

∀ c ∃n0

(
n ≥ n0 ⇒ f (an) > c

)
. By the assumption, (an) has

a convergent subsequence (amn) with lim amn = a ∈ X . By the

continuity of f in a and Exercise 12, lim f (amn) = f (a) ∈ R. But

this is a contradiction because lim f (amn) = +∞. Boundedness of

f [X ] from below follows in a similar way.

Thus we define the real numbers A = inf(f [X ]) and B =

sup(f [X ]). By the definition of infima, there is a sequence (an) ⊂ X

such that lim f (an) = A. By the assumption, (an) has a convergent

subsequence (amn) with lim amn = a ∈ X . By the continuity of f in

a and Exercise 12, lim f (amn) = f (a). Since subsequences preserve

limits, lim f (amn) = A. Thus f (a) = A and for every x ∈ X ,

f (a) = A ≤ f (x)

because A = inf(f [X ]). We produce the element b ∈ X in a similar

way. 2

• Products of metric spaces. For the MSs (M,d) and (N, e), we

define their product (M×N, d×e) so that M×N is the Cartesian

product of the sets M and N and the d× e metric on it is given by

(d× e)((a1, a2), (b1, b2)) =
√
d(a1, b1)2 + e(a2, b2)2 .

Exercise 14 Prove that the product of two MSs is a MS.

Exercise 15 Prove that the product of two Euclidean MSs

(Rm, em) and (Rn, en)

8



is (except for a formality in notation) the Euclidean MS

(Rm+n, em+n) .

What is the “formality”?

• Characterization of compact sets in Euclidean MSs. We de-

fined the ball B(a, r) in a MS last time. A set X ⊂ M in a MS

(M,d) is open if

∀ a ∈ X ∃ r
(
B(a, r) ⊂ X

)
.

Here r > 0 is a real number, the radius of the ball B(a, r). X is

closed if M \X is open. X is bounded if

∃ a ∈M ∃ r
(
X ⊂ B(a, r)

)
.

The diameter of the set X is, for V = {d(a, b) | a, b ∈ X} ⊂
[0,+∞), defined as

diam(X) :=

{
sup(V ) . . . the set V is bounded from above and

+∞ . . . the set V is unbounded from above .

Exercise 16 Prove that any set X is bounded if and only if

diam(X) < +∞.

Exercise 17 Prove that for any unbounded set X there is a sequence

(an) ⊂ X such that m < n⇒ d(am, an) > 1.

In the following two exercises we review basic properties of open

and closed sets in a MS.

Exercise 18 Let (M,d) be a MS. Then the following holds.

1. The sets ∅ and M are both open and closed.
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2. Any finite intersection of open subsets of M is an open set

and any finite union of closed subsets of M is a closed set.

3. Any union of open subsets of M is an open set and any

intersection of closed subsets of M is a closed set.

Exercise 19 Let (M,d) be a MS and X ⊂M . Then

the set X is closed ⇐⇒
⇐⇒ ∀ (an) ⊂ X ∀ a ∈M

(
lim an = a⇒ a ∈ X

)
.

Theorem 20 (on compactness) The following holds.

1. If X ⊂M is a compact set in a MS (M,d), then X is closed

and bounded. The opposite implication does not in general

hold, by Exercise 22.

2. If (M,d) and (N, e) are two compact MSs, then their pro-

duct (M ×N, d× e) is a compact MS.

Proof. 1. If X is not closed, then by Exercise 19 there exists

a convergent sequence (an) ⊂ X such that lim an = a ∈ M \ X .

This sequence does not have a convergent subsequence with limit

in X , since each subsequence has limit a. When X is not bounded,

we easily construct a sequence (an) ⊂ X such that m < n ⇒
d(am, an) > 1 (Exercise 17). This sequence clearly has no conver-

gent subsequence.

2. Let (an) = ((an,1, an,2)) be a sequence in the product MS.

We choose a subsequence (bn) such that (bn,1) has a limit b ∈ M
in (M,d). From (bn) we select a subsequence (cn) such that (cn,2)

has a limit c ∈ N in (N, e). It is not difficult to see that (cn) is
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a subsequence of the sequence (an) and that it has in the product

MS the limit

lim cn = (b, c) ∈M ×N .

2

Exercise 21 Let (M,d) be a compact MS and X ⊂ M be a

closed set. Prove that X is compact.

Exercise 22 Let M be an infinite set and the metric d on it is

given as d(a, b) = 1 for a 6= b and d(a, a) = 0. Show that (M,d)

is a MS that is bounded and closed but not compact.

Theorem 23 (compact sets in Rn) In every Euclidean MS

(Rn, en), X ⊂ Rn is compact if and only if it is bounded and

closed.

Proof. By the first part of the previous theorem, it suffices to prove

that every bounded and closed set X ⊂ Rn is compact. From its

boundedness it follows that for a real number a > 0,

X ⊂ K = [−a, a]n = [−a, a]× [−a, a]× · · · × [−a, a] ⊂ Rn .

The Euclidean MS (K, en) is compact by the Bolzano–Weierstrass

theorem, part 2 of the previous theorem, and Exercise 15. Clearly,

X is also closed in (K, en) (problem 24), so according to Exercise 21,

X is compact in (K, en) and therefore in (Rn, en) (Exercise 25). 2

Exercise 24 Let (M,d) be a MS, A ⊂ B ⊂M and A be a clo-

sed set in (M,d) ⇒ A is closed also in the subspace (B, d).

Exercise 25 Let (M,d) be a MS and A ⊂ B ⊂ M . Then A is

compact in (M,d) ⇐⇒ A is compact in the subspace (B, d).
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THANK YOU FOR YOUR ATTENTION

Homework Exercises. Please send to me (klazar@kam.mff.cuni.cz)

by the end of the coming Sunday solutions to the Exercises 5, 9, 11,

17 and 22.
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