MATHEMATICAL ANALYSIS 3 (NMAI056)
summer term 2024/25
lecturer: Martin Klazar

LECTURE 12 (May 7, 2025) NEWMAN’S PROOF OF
THE PRIME NUMBER THEOREM

e The Prime Number Theorem, abbreviated PN'T', is the asympto-
tic estimate

m(z) ~ x(logz)™! (x — +00)
of the prime number counting function m(x), defined for any x € R

as the number of primes p such that p < x. For example, 7(11.8) =
1{2,3,5,7,11}| =5 and 7(x) = 0 for every x < 2. In other words,

lim, o0 sy = 1.
e History. PNT was conjectured around 1800 by Carl Friedrich
Gauss (1777-1855). It was proved in 1896 by Jacques Hadamard
(1865-1963) and, in parallel, Charles J. de la Vallée Poussin
(1866-1962). In 1980 Donald J. Newman (1930-2007) discove-
red substantial simplifications in analytic proofs of PNT. His proof
is the topic of this lecture. I follow the article

D. Zagier, Newman’s short proof of the Prime Number
Theorem, Amer. Mathem. Monthly 104 (1997), 705708,

and my lecture notes

Analytic and Combinatorial Number Theory I, KA M-
DIMATIA Series, preprint no. 968 (2010), v+92 pp.

e Fquivalence of PNT to 9(x) ~ = (x — +00). We define the
function ¥(z) = > _ logp for x € R.

p<z
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Proposition 1 (restating PNT) [t is true that
PNT < J(z) ~z (x — +00).

Proof. Clearly, d(z) = >
e > () we have

D) 2 Sy logp > (w(x) — 2191 — ) log .

The equivalence follows from these two bounds. O

logp < w(x)logx. Also, for any

Pz

o Cebysev’s bound. Around 1852 Pafnutij L. Cebysev (1821-
1894 ) proved the weak form of PNT that

I(z)=0(zr) (r=2)

— i < Y(x) < cox for every x > 2 and constants ¢; > 0. We
make use of the upper bound.

Proposition 2 (¥(z) = O(z)) We have
d(z) =O0(z) (z=2)
— 0 < ¥(x) < cx for every x > 2 and a constant ¢ > 0.
Proof. For any n € N,
exp(9(2n) = (1)) =[], <y, p < o = (3) < (14 1) =47

Hence 9(2n) — 9(n) < (log4)n. For x > 2 let k € N be such that
=1 < x < 2% Then

I(x) < S0 (0(27) —9(2) < (log4) b, 271 < (2logd)z .
Il

e Morera’s theorem. The following interesting theorem is due to
the Italian engineer and mathematician Giacinto Morera (1856
1909). Recall that U C C is an open set.
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Theorem 3 (Morera) Let f: U — C be continuous and such
that faRf = 0 for every rectangle R C U. Then f is holomor-
phic.

Proof.
]

Corollary 4 (holomorphic limits) Let f,,: U — C, n € N,
be a sequence of holomorphic functions with pointwise limat

lim f,(2) = f(z) (: U — C).

If the convergence is uniform on every compact subset of U,
then f is holomorphic.

Proof. It follows from Morera’s theorem — the uniform limit f is
continuous and for any rectangle R C U we have

Jor = [oplim f, =lim [, f,, = im0 = 0.
0

Corollary 5 (removable singularity) If f: U — C is con-
tinuous, and if it is holomorphic on U \ {a} for some point
a € U, then f is holomorphic on U.

Proof.
]

e The zeta function ((s). Using Morera’s theorem we introduce
the most important function of analytic number theory. For a € R
we define the half-planes

Uso ={2€C: re(z) >a} and Us, ={2 € C: re(z) > a},
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and similarly for the halfplanes U., and U<,. Recall that for real
a > 0 and z € C we have a* := exp(zloga). For any s € U.; we
define the zeta function as the sum

1 _
C(s) = Ziil o 2211” .
The series absolutely converges because |n®| = n™(®).

Corollary 6 (defining ((s)) ((s) is holomorphic on Us;.

Proof. This follows from Corollary 4. Let A C U~y be compact.

Then there is a 6 > 0 such that A C Us1,s. Let an ¢ > 0 be
given. Then there is ng such that for every n > m > ngy we have

S 7179 < g Then for the same n and m and every s € A,

j=mJ
|2 5| € X e € e S €

Thus the series defining ((s) converges uniformly on A. O

e Fxtending ((s). The function ((s) has a meromorphic extension
to C\ {1}. For our purposes an extension to U~ \ {1} suffices.

Proposition 7 (extending ((s)) There exists a holomorphic
function f(s): Usg — C such that on U~1 we have equality

C(s) = f(s)+(s—=1)7",
The right-hand side extends ((s) to the meromorphic function
C(s): Uso\ {1} = C.
Proof. We obtain a holomorphic function f: U.y — C such that
((s) — = = f(s) for every s € Us=1. To this end we define, for

s—1

n € N and s € C with s # 1, functions
ntl, g -5
gn(s) = [, (7 = a7 de = 5k — L (G - )
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The middle integral formula works also for s = 1 and shows that
gn(s): C — C is continuous. The last algebraic formula shows that
gn(s) is holomorphic on C\ {1}. By Corollary 5 the function g,(s)
is entire. The algebraic formula shows that for every s € U.q,

C(s) = 75 =201 9n(s)
Forn € N, s € C and = € [n,n+ 1] an integral ML estimate gives
the bound

_S_

B ] < 1ol 1 b =

‘n ‘ - ‘8 s+1 pre(s)+1 — pre(s)+1 -

Using an integral ML estimate again we get the bound
|gn(8)| S L- nrel(i|)+1 - nre|(i‘)+1 :

We may define f(s) = > 7 gn(s) for any s € U~y because by
the bound on |g,(s)| this series absolutely converges. As in Co-

rollary 6, this convergence is uniform on any compact set A C Usy.
By Corollary 4 the function f(s): Usy — C is holomorphic and is
therefore the desired function. O

In the previous proof we made an effort to obtain the standard
extension argument for ((s) in a completely clear and rigorous form.
e The Fuler product. We denote by p1 =2 < py =3 < ... the
increasing sequence (p,) of prime numbers.

Theorem 8 (Euler product for ((s)) For any s € U~q,

. n -1
¢(s) = im0 [ [ (1- p; ) = Hpﬁl/ps.
Proof. We denote the above n-th partial product by P(n,s). Let
n € Nand s € U.q. Then

C(s) = Pn, s)] = [ X s = [Tims Zomeo @) |
Zman m~) = T(n, s).
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We used the Fundamental Theorem of Arithmetic by which every
natural number has a unique expression as a product

a1 gyt .. qZ"“ (a; € N)

of powers of distinct primes ¢;. Since lim,, o, T'(n, s) = 0 for every
s € U~1, the Euler product for ((s) follows. O

o The logarithmic derivative of . In this passage we rigorously
deduce the formula that for any s € U1,

%ss)) =2 io——gpp"’ '
[t is usually obtained by taking logarithm of the Euler product and
differentiating the result. It is a challenge to do this really rigorously
because in the complex domain logarithm behaves badly. In fact, I
did it in my LN cited on p. 1. Now, 15 years later, I take a different
route.

Proposition 9 (¢') For any s € U~q,

('(s)=>_"1logn-n"".

Proof.
]

Proposition 10 (product of Dirichlet series) Let A(s) =
Y ragn® and B(s) = Y 7, b,n* be Dirichlet series, ab-

solutely convergent on Uy, and let ¢, = ) ,._, asbe. Then
C(s)=>" . c,n~* absolutely converges on U1 and

A(s)-B(s) =C(s) (s€Us).



Proof.

Proposition 11 (i) For any s € Uy,

C(s) - dopiypu(n) - m™* =1,

Proof.
[l

Corollary 12 (( #0 on U.;) We have ((s) # 0 for every s

mn Usq and

ﬁ = 2211 p(n)-n=* (s € Usy).

Proof.
]
Proposition 13 (¢'/¢) For any s € U1,
s o —S$ lo
CC((S)) - anl A<n) n = Ep 1——g]3Z '
Proof.
[l

o Non-vanishing of ((s) on Us;. In every analytic proof of PNT!
the following property of ((s) is crucial.

Theorem 14 (( # 0) For any s € Usy \ {1} we have ((s) # 0.
Proof. Will be added later. O

IThis does not apply to the elementary proofs of PNT which do not use complex analysis.
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Corollary 15 (extending ('/{) The function

d(s) . 1
s) T

has a holomorphic extension to some U D Us;.

Proof. Proposition 7 and Theorem 77 show that % extends
holomorphically to some U O (Us1\ 1). By Proposition 7, on U\
{1} we have expression ((s) = f(s)+ -7 where f(s) is holomorphic

on Us=g. Then on a deleted open disc B(1,6) \ {1} we have

¢'(s) 1 =(s=1)724f(s) 1 fe)+(s=1)f(s)
0s) T 51T o) i) a1 T -Df6)

The latter fraction is holomorphic on B(1,4). O

e Newman’s proof. The contribution of D.J. Newman to PNT
is in his simple proof of the following version of theorems obtai-

ned earlier by Norbert Wiener (1894-1964) and Shikao Ikehara
(1904-1984).

Theorem 16 (Wiener—lIkehara) Let
f:10, +00) = R

be a bounded function that for every number a > 0 has the
Riemann integral foa f. Let the holomorphic function

9(z) = lim, 10 [y f(t)exp(—2t)dt: Uy — C
have a holomorphic extension to some U D Usy. Then
limg 4 o0 foa f=4g(0).

Before we plunge in the proof we justify that g(z): Usy — C is
correctly defined and is holomorphic. It follows from Morera’s the-
orem (details will be added later). Now we can prove the theorem.
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Proof. (Nevvman) For real a > 0 we set

=[5 f(t) exp(—=zt)dt.

By ... this is an entire function. We show that

lim ga(o) - 9(0) .

a——+00

For real R, > 0 we consider the set
C(R,0)={2€C: |zl <RAre(z) > =6} (CC),
where 0 = §(R) is so small that g(z) extends holomorphically to
an open set containing C'(R, d); for every R > 0 such § > 0 exists
due to the assumption on ¢g(z) and compactness of the half-disc
{z€C: |z| < RAre(z) >0}.
Let C' = C(R) be the boundary dC(R, d). By the Cauchy for-

mula,

g(0) — g4(0) = 27” L[ (gl o(2)) exp(za) (1 + 22R?)z 1 dz
= 2 Jololz) — u(2)C() = S I(R, a).

In order to show that [(R, a) — 0 as a — +o0o, we express the

integral I(R, a) as a sum of three contributions which we separately

estimate. With C~ = CNU<y, K = {2z € C: |z] = R, re(2) < 0}
and C* = C' N Usq we define
](R, CL) = Il(R CL) —|-]2(R CL) —|—]3(R, CL)
= Jor(9(2) = 9a(2))G(2) + [ 9(2)G(2) —
= Jic 9al2 G( ).
In I3(R,a) we could replace C~ with the half-circle K without
changing the integral because the integrand is holomorphic on C \

[0},



The integral I (R, a) = [+ (g( 9a(2))G(2). Let B > 0 be
such that |f(t)| < B for every t > O For z € Us( we have

‘g(Z) - ga(z>’ S B f;’oo ‘e—tz‘ dt _ Be—re(z).a .

re(z)

For z € C with |z] = R we have
G(2)] = |52 = 20Ela . [re(z)] - B2,
The curve C™ has length 7R and we get the ML estimate
(R, a)] < 22,

The integral I3(R, a) = [} gu(2)G(2). For z € U<y we have

ga(2)] < | [y F(t)e = dt| < B [* et dt| = et
The curve K has length mR and we get the same ML estimate
I3(R, a)| < %7
The integral IQ(R, a) = fc, g(z)G(z) We write
L(R,a)= [ g {1+ 2°R7? = [ J
Let My = Mi(R) = maxg- |J(2)|. Then
(R, a)] < M [, |e*"|dz

From the definition of C'~ we see that for every € > 0 there is
a k > 0 such that on C~ we have |eza‘ < e except the part
of C'™ near to the imaginary axis whose length is the e-fraction of
the length |C~| < 3R. On this part of C~ we use the trivial bound
|eza‘ < 1. Thus

(R, a)| < My(e™™ +¢) - |C7| <3MR(e ™™ +¢).
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Hence for every fixed R > 0 we have lim,_, 1« |I2(R, a)| = 0.

We combine these three bounds. Let an ¢ > 0 be given. We
fix an R > 872 and the corresponding curve C' = C(R). Then
[I1(R,a)| + |I3(R,a)| < § for every a. Then we take an ag > 0
such that if @ > ag then |I5(R, a)| < 5. For any such a we have

(R, a)| < |L(R, a)| + |I3(R, a)| + | (R, a)| <5+ 5=¢.

O

F(z+1
z+1

— % We introduce the function

F(S):Zplogp: U.1 — C.

pS

e [ixtending

By Corollary 4 the function F'(s) is holomorphic.

Proposition 17 (an extension) The holomorphic function

F(z+1) 1.

has a holomorphic extension to some U D Usy.

Proof. For s € U.; we have by Corollary 77 that
¢'(s) _ lo _ lo
~53 = >,k =F(s)+3, p—s(pffl) .
Thus on Usq,

F(s) = _ds) O log p

¢(s) pp*(p°-1) -
By Corollary 4, the sum is holomorphic on U 5. By Corollary 15,
the function F(s) — (s — 1)~! has holomorphic extension to some

UD Uzl. O

e Convergence of the integral f1+oo(19(:c) — z)z~? do. We deduce
from the previous theorem the existence and finiteness of the next
limit.
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Proposition 18 (convergence of an [) The limit
o =lim, 1o [ (Wz) —2)27% (ER)
exists and s finite.

Proof. For any s € U.q,

T 9(ehe st dt =

S Jo

= ¥, = Fls).

We set s = 2z + 1, divide by z + 1, subtract % = O+OO e~ dt and
get that
f+oo (D(ehe™ —1)e " dt = Fetl) 1

0 z+1 z
By Propositions 2 and 17, the functions f(t) = d(e')e™" — 1 and
g(z) = F(z+1)(z+1)"! — 271 satisfy assumptions of Theorem 16,
which gives

limy 40 fologa f(t) =limy o [ (I(z) — 2)27% = g(0) = .

O

Corollary 19 (a Cauchy condition) For every € > 0 there
1s a ¢ > 1 such that for every a,b € R with b > a > ¢ we have

| [P(9(z) — 2)z7?| <e.

Proof. Let f(z) = (J(z) — x)x~% and let an € > 0 be given. By
Proposition 18 there is a ¢ > 1 such that if @ > ¢ then } N f—oz} <
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. We have by the additivity of integrals and the triangle inequality
hat for every a,b € R with b > a > c,

‘fabf‘:|f1bf_f1af|§‘f1bf_04|+‘04—f1af|§%+%=€.

O

—+ o

e Conclusion: 9(x) ~ x (v — +00). We finish the proof of PNT.
Proposition 20 (¢(x) ~ z) lim,, o V(z)z~ ! = 1.

Proof. Suppose, for the contrary, that there is a A > 1 such that
@ > )\ for arbitrarily large > 0. Then we have for any such z,

since ¥(x) weakly increases, that

L@ -2 > MO -t = [P =d >0 (u=1),

X

This contradicts Corollary 19. If there is a A € (0,1) such that

@ < X for arbitrarily large x > 0, we get a similar contradiction

... d < 0 by bounding the integral over the interval Az, x]. O

In view of the initial Proposition 1, this concludes the proof of PNT.

THANK YOU FOR YOUR ATTENTION!

No homework exercises in this lecture.
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