EXERCISES FOR TUTORIAL 9 OF MA 2, Dec 6, 2023
Review of the Riemann integral of real functions of one (real) variable.

1. Using your favorite definition of the Riemann integral compute $\int_{0}^{1} x \mathrm{~d} x$.
2. Using your favorite definition of the Riemann integral prove that if the function $f:[a, b] \rightarrow \mathbb{R}$ is unbounded then the integral $\int_{a}^{b} f$ does not exist.
3. Using your favorite definition of the Riemann integral prove that if the integral $I:=\int_{a}^{b} f$ exists (and $a \leq b$ ), then we have the inequality

$$
|I| \leq(b-a) \cdot \sup (\{|f(x)| \mid a \leq x \leq b\}) .
$$

4. We have seen this already but still: give examples of Riemann integrable and nonnegative functions $f:[a, b] \rightarrow[0,+\infty)$ such that $\int_{a}^{b} f=0$, but $f \neq 0(f$ is not constantly 0$)$.
5. Give an example of a continuous and bounded function $f:(0,1] \rightarrow \mathbb{R}$ that is not uniformly continuous.
