EXERCISES FOR TUTORIAL 8 OF MA 2, Nov 30, 2023
Problems are similar to the previous set but now they are for n variables, where $n=1,2,3, \ldots$.

1. Compute complete Taylor expansion of the function $f(x, y)=\sqrt{x}+$ $\sqrt{y}:(0,1)^{2} \rightarrow \mathbb{R}$, with the center in $\left(\frac{1}{2}, \frac{1}{2}\right)$.
2. Compute complete Taylor expansion of the function $f\left(x_{1}, \ldots, x_{n}\right)=$ $\exp \left(x_{1}+\cdots+x_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$, with the center in $(0, \ldots, 0)$.
3. Using partial derivatives find (local and global) extremes of the function $f(x, y, z)=\frac{1}{1+x^{2}+y^{2}+z^{2}}: \mathbb{R}^{3} \rightarrow \mathbb{R}$. Check your results by another argument.
4. Using Lagrange multipliers find (local and global) extremes of the function

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}
$$

on the set $M=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+\cdots+x_{n}=1\right\}$. Explain your solution geometrically.
5. Do the same for the function $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}$ and the set M equal to the sphere in \mathbb{R}^{n} centered in $(0, \ldots, 0)$ and with radius n.

