EXERCISES FOR TUTORIAL 6 OF MA 2, Nov 16, 2023
Two more HWs on compact sets, where $M=(M, d)$ is a metric space. Then three problems on determinants, where $M \in \mathbb{Z}^{n \times n}$ is a square $n \times n$ matrix with integer entries.

1. Let $A, B \subset M$ be compact sets. Prove by the sequential definition of compactness that also $A \cup B$ is compact.
2. Prove the same via the definition of compactness by open covers.
3. Show that $\operatorname{det} M$ is an integer.
4. Let $M=\left(a_{i, j}\right)_{i, j=1}^{n}$ and $\left|a_{i, j}\right| \leq A$ for every $i, j=1,2, \ldots, n(A \geq 0$ is a real number). Then $|\operatorname{det} M| \leq$?. That is, estimate the determinant from above in terms of A and n.
5. Let M be regular and such that its inverse M^{-1} is (like M) integral, i.e., $M^{-1} \in \mathbb{Z}^{n \times n}$. Show that then $\operatorname{det} M= \pm 1$.
