In the following M = (M, d) is a metric space.

- 1. Define what it means that the space M is complete and show that every compact space is complete.
- 2. Give (and justify) an example of a space M that is complete but not compact.
- 3. Let M = ([0, 1), |x y|). Give (and justify) an example of a continuous and bounded function $f: M \to \mathbb{R}$ that has no maximum on M.
- 4. Let $F(x,y) = x^2 + 2y^2 1$. For which points $(x_0, y_0) \in \mathbb{R}^2$ with $F(x_0, y_0) = 0$ is the assumption of the theorem on implicit functions (TIF) satisfied, so that we can solve the equation F(x,y) = 0 for y = f(x) in a neighborhood of x_0 ? Compute $f'(x_0)$ in two ways: using the formula in TIF and then directly (find f(x) explicitly and differentiate it).
- 5. The same for the variable y, that is, for the function x = g(y).