1. Suppose that the map $f=\left(f_{1}, f_{2}, f_{3}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by $f_{i}(x, y)=$ $x^{i}+y^{i}, i=1,2,3$. Compute the matrix $D \mathbf{f}$ of the total differential (in a general point $\left.(x, y) \in \mathbb{R}^{2}\right)$.
2. Which of the intervals $I=[0,1),[0,1]$ and $[0,+\infty)$ has the property that every sequence $\left(a_{n}\right) \subset I$ has a convergent subsequence with the limit in I ? Justify your answer.
3. Prove that every finite metric space is compact.
4. Let $(X,|x-y|), X=\{0\} \cup\{1 / n \mid n=1,2, \ldots\} \subset \mathbb{R}$, be an Euclidean subspace of the real axis. Is it compact? Justify your answer.
5. Is the intersection of two compact subsets of a metric space always a compact set? Justify your answer.
