EXERCISES FOR TUTORIAL 3 OF MA 2, Oct 19, 2023
Recall that in an ultrametric space $X=(X, d)$ (briefly UMS), which is a special kind of a metric space, the strong triangle inequality holds: $d(x, y) \leq \max (\{d(x, z), d(z, y)\})$.

1. Show that in any UMS in any triangle some two sides have equal lengths - every triangle is isosceles.
2. Prove that in any UMS in any ball $B(a, r)$ any point $b \in B(a, r)$ can serve as the center (of $B(a, r)$).
3. In MA 2 one has to know some linear algebra. Let $k, l, m, n \in \mathbb{N}$ (these are four natural numbers) and $A \in \mathbb{R}^{k \times l}, B \in \mathbb{R}^{l \times m}$ and $C \in \mathbb{R}^{m \times n}$ are three real matrices with the stated dimensions. Define the matrix product $A \cdot B$.
4. Prove that it is associative:

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C) .
$$

5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $g_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}, i=1,2,3$, are maps given by the formulas $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}, g_{1}(x, y)=2 x+y, g_{2}(x, y)=$ $\sin (x+y)$ and $g_{3}(x, y)=\cos (x+y)$ and let

$$
h(x, y)=f\left(g_{1}(x, y), g_{2}(x, y), g_{3}(x, y)\right)
$$

be the composite map. Use the chain rule to compute the partial derivatives

$$
\frac{\partial h}{\partial x} \text { and } \frac{\partial h}{\partial y} .
$$

