- 1. Give an example of a metric space (X, d) and a sequence $A_n \subset X$, $n = 1, 2, \ldots$, of open sets in it such that the set $\bigcap_{n=1}^{\infty} A_n$ is not open.
- 2. Give an example of a metric space (X, d) and a sequence $A_n \subset X$, $n = 1, 2, \ldots$, of closed sets in it such that the set $\bigcup_{n=1}^{\infty} A_n$ is not closed.
- 3. Let $f: X \to Y$ be a map between metric spaces (X, d) and (Y, e) and let $a \in X$. Define what it means that f is continuous in a.
- 4. Let $f: X_1 \to X_2$ and $g: X_2 \to X_3$ be maps between metric spaces $(X_i, d_i), i = 1, 2, 3, a \in X_1, b := f(a) \in X_2, f$ be continuous in a and g be continuous in b. Show that the composite map $g \circ f = g(f): X_1 \to X_3$ is continuous in a.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the map given in the lectures, i.e. $f(x, y) = xy/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0 (\mathbb{R}^2 and \mathbb{R} are endowed with euclidean metrics). Find $(\partial f/\partial x)(0, 0)$ and $(\partial f/\partial y)(0, 0)$ and show that f is not continuous in the point (0, 0).