EXERCISES FOR TUTORIAL 10 OF MA 2, Dec 14, 2023
More review of the Riemann integral, but also of multivariate functions. For real numbers $a<b$ we denote by $\mathcal{R}(a, b)$ the set of Riemann-integrable functions $f:[a, b] \rightarrow \mathbb{R}$.

1. Let the function $f:[0,1] \rightarrow \mathbb{R}$ be given by $f(1 / n):=1$ for $n=1,2, \ldots$ and by $f(x):=0$ else. Is $f \in \mathcal{R}(0,1)$? If yes, compute $\int_{0}^{1} f$.
2. Prove the implication $f, g \in \mathcal{R}(a, b) \Rightarrow f+g \in \mathcal{R}(a, b)$.
3. Prove the implication $f, g \in \mathcal{R}(a, b) \Rightarrow f g \in \mathcal{R}(a, b)$. In this and the previous problem you do not have to use definitions of the R. integral and instead you can refer to a theorem on the R. integral.
4. Define the Riemann integral of functions with several variables.
5. Define uniform continuity of a map $f: M \rightarrow N$ between two metric spaces (M, d) and (N, e).
