First conditions for getting credits for the tutorial. You need work out $\geq \frac{3}{5}$ of the exercises and get in the test on the last tutorial $\geq \frac{1}{2}$ points. For every tutorial, except the last one, a set of five exercises will be posted here before the tutorial. Please, send me your solutions via e-mail (in legible form) to klazar@kam.mff.cuni.cz at the last by the next Tuesday/Wednesday midnight after the tutorial. I will discuss solutions on the Thursday tutorial (and may bring to some of you your solutions with my comments).

1. Write some set-theoretical definition of a function $f: A \rightarrow B$. What is the definition domain and the range of a function? For $A^{\prime} \subset A$ and $B^{\prime} \subset B$, define the sets $f\left[A^{\prime}\right]$ and $f^{-1}\left[B^{\prime}\right]$.
2. Write the definition (axioms) of a metric space

$$
(X, d) .
$$

Show that nonnegativity of the metric d follows from other axioms.
3. For real $a<b$ we denote by $\mathcal{R}(a, b)$ the set of functions $f:[a, b] \rightarrow \mathbb{R}$ that have Riemann integral on $[a, b]$. For $f, g \in \mathcal{R}(a, b)$ we define

$$
d(f, g):=\int_{a}^{b}|f(x)-g(x)| \mathrm{dx} .
$$

Is ($\mathcal{R}(a, b), d)$ a metric space?
4. Define open sets, and balls $B(x, r)$ (called $\Omega(x, r)$ in the lecture) with the center $x \in X$ and radius $r>0$ in a metric space (X, d). Show that every ball is an open set.
5. For sets A and B define their Cartesian product $A \times B$. Prove: if A and B are nonempty then

$$
A \neq B \Rightarrow A \times B \neq B \times A .
$$

