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Chapter 1

Lecture 2. Theorems on
existence of limits of
sequences

In the extended version of Lecture 2 we introduce arithmetic of infinities and
define neighborhoods of points and infinities. Then we define simultaneously
finite and infinite limits of real sequences and compute some, for example the
limit of the n-th root of n. We prove that monotonous and quasi-monotonous
sequences have limits and conclude this chapter by the proof of the Bolzano–
Weierstrass theorem that every bounded sequence has a convergent subsequence,
and the proof of the theorem on the Cauchy condition that a sequence converges
iff it is Cauchy.

• Review. Recall the logical and set-theoretic notation introduced in lecture 1,
recall what is R and recall the natural numbers N = {1, 2, . . . }. We denote by
i, j, k, l, m, m0, m1, . . . , n, n0, n1, . . . natural numbers and a, b, c, d, e, δ, ε
and θ, possibly with indices, are real numbers. Always δ, ε, θ > 0 and we think
of them as close to zero. Recall what is a real sequence (an) ⊂ R. Letters M
and N usually denote sets of real numbers.

Exercise 1.1 Read negated claim

∀ ε ∃ δ ∀ a, b ∈M : |a− b| < δ ⇒ |f(a)− f(b)| < ε .

• Arithmetic of infinities. So that we can define infinite limits we add to R the
infinities +∞ and −∞. We get the extended real line

R∗ := R ∪ {+∞,−∞} .

We compute with infinities as follows.
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A ∈ R ∪ {±∞} ⇒ A+ (±∞) = ±∞+A := ±∞ ,

A ∈ (0, +∞) ∪ {+∞} ⇒ A · (±∞) = (±∞) ·A := ±∞ ,

A ∈ (−∞, 0) ∪ {−∞} ⇒ A · (±∞) = (±∞) ·A := ∓∞ and

a ∈ R ⇒ a

±∞
:= 0

where on each line we take only upper or only lower sings. Also, −(±∞) := ∓∞,
−∞ < a and a < +∞ for every a, and −∞ < +∞. Subtraction of an element
A ∈ R∗ reduces to adding −A. Division by an a 6= 0 reduces to multiplication by
1/a. All remaining values of arithmetic operations with infinities, i.e., (A ∈ R∗)

A

0
, (±∞) + (∓∞), 0 · (±∞), (±∞) · 0, ±∞

±∞
and

±∞
∓∞

,

are undefined, these are so called indeterminate expressions. The elements of
R∗ are usually denoted by A, B, K and L.

Exercise 1.2 Compute −∞−2 , (−∞)− (+∞), −∞+ 10 and +∞
0 .

Exercise 1.3 Show that (R∗, <) is a linear order.

Exercise 1.4 Show that in (R∗, <) every subset X ⊂ R∗ has both infimum and
supremum — this is a nice property of the extended real line. Find the values of
inf(∅), inf(R), sup({−∞}) and sup(Z).

• Neighborhoods of points and infinities. Let us recall notation for real intervals:

(a, b] = {x ∈ R | a < x ≤ b}, (−∞, a) = {x ∈ R | x < a}

etc. One can still encounter notation with reversed brackets, where the above
intervals are written as ]a, b] and (−∞, a[, respectively.

Definition 1.5 (neighborhoods) An ε-neighborhood of b ∈ R and a deleted
ε-neighborhoods of b is defined as

U(b, ε) := (b− ε, b+ ε) and P (b, ε) := (b− ε, b) ∪ (b, b+ ε) ,

respectively, so that P (b, ε) = U(b, ε) \ {b}. Similarly, ε-neighborhoods of infini-
ties are

U(−∞, ε) := (−∞, −1/ε) and U(+∞, ε) := (1/ε, +∞) .

We set P (±∞, ε) := U(±∞, ε).

The main property of neighborhoods is that if V, V ′ ∈ {U,P} then

A, B ∈ R∗, A < B ⇒ ∃ ε : V (A, ε) < V ′(B, ε) ,

meaning that a < b for every a ∈ V (A, ε) and every b ∈ V ′(B, ε). In particular,
A 6= B ⇒ ∃ ε : V (A, ε) ∩ V ′(B, ε) = ∅. Next we give some more properties of
neighborhoods.
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Exercise 1.6 Show that every U(A, ε) is a convex set of real numbers: if a <
b < c with a, c ∈ U(A, ε) then b ∈ U(A, ε) too. Show that no deleted neighborhood
P (a, ε) is convex.

Exercise 1.7 Show that for any V ∈ {U,P} and any δ ≤ ε one has that

V (A, δ) ⊂ V (A, ε) .

Exercise 1.8 Show that for any a and any A,⋂
ε>0

U(a, ε) = {a} and
⋂
ε>0

U(±∞, ε) =
⋂
ε>0

P (A, ε) = ∅ .

• Limits of sequences. If it is not said else, (an), (bn), (cn) ⊂ R denote real
sequences. The next definition belongs to the fundamental ones in analysis and
the whole mathematics.

Definition 1.9 (limit of a sequence) Let (an) ⊂ R be a sequence and let
L ∈ R∗. If

∀ ε ∃n0 : n ≥ n0 ⇒ an ∈ U(L, ε) ,

we write that lim an = L and say that the sequence (an) has the limit L.

L ∈ R are finite limits and L = ±∞ are infinite limits. Sequences with finite
limits converge, else they diverge. Shortly we prove that limits, if they exist, are
unique. A finite limit lim an = a means that for every real (and no matter how
small) ε > 0 there exists an index n0 ∈ N such that for every index n ∈ N from
n0 on the distance between an and a is less than ε:

|an − a| < ε .

Infinite lim an = −∞ means that for every (negative) c ∈ R there exists an
index n0 such that for every index n from n0 on,

an < c .

Similarly, with reversed inequality, for the limit +∞. Variant notation for limits
which we will use is

lim
n→∞

an = L and an → L .

The simplest convergent sequence is an eventually constant sequence (an) with
an = a for every n ≥ n0, then of course lim an = a. A popular image of limits
by which “a sequence approaches its limit arbitrarily closely but never reaches
it exactly (possibly only in infinity)” is a poetic one but is incorrect.

Exercise 1.10 Let (an) and (bn) satisfy an = bn for every n ≥ n0. Show that
then

lim an = A⇒ lim bn = A .
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Proposition 1.11 (uniqueness of limits) Limits of sequences are unique,

lim an = K ∧ lim an = L⇒ K = L .

Proof. Let lim an = K, lim an = L and an ε be given. By the definition 1.9
there is an n0 such that n ≥ n0 ⇒ an ∈ U(K, ε) and an ∈ U(L, ε). Thus
∀ ε : U(K, ε) ∩ U(L, ε) 6= ∅. But then by the main property of neighborhoods
mentioned above, K = L. 2

• Two limits. We show that lim 1
n = 0. This is clear, for every ε and every

n ≥ n0 := 1 + d1/εe,

0 <
1

n
≤ 1

1 + d1/εe︸ ︷︷ ︸
> 1/ε

<
1

1/ε
= ε; 1/n ∈ U(0, ε) .

Here dae ∈ Z denotes the upper integral part of a number a, the least v ∈ Z such
that v ≥ a. Similarly, the lower integral part bac of a number a is the largest
v ∈ Z such that v ≤ a. Our second example is that

3
√
n−
√
n→ −∞ .

Indeed, for any given c < 0 for every n ≥ n0 > max(4c2, 26) it holds that

non-trivial︷ ︸︸ ︷
3
√
n−
√
n =

trivial︷ ︸︸ ︷
n1/2 · (n−1/6 − 1)︸ ︷︷ ︸

n > 26 ⇒ · · · < −1/2

< −n1/2︸ ︷︷ ︸
· · · < −2|c|

/2 < −2|c|/2 = c .

One does not have to find an optimum value of the index n0 in terms of ε or
c. This can be done easily only in the simplest cases like lim 1

n , otherwise it
may be hard to do. But any value of n0 suffices such that if n ≥ n0 then the
membership an ∈ U(L, ε) in the definition of limit holds. To find such n0 it
helps to have some skill in manipulating inequalities and estimates.

Exercise 1.12 Compute the limit

lim
n→∞

3
√
n−
√
n

4
√
n

.

• Subsequences of sequences. A subsequence arises by omitting some terms of
the given sequence so that still an infinite sequence remains. Formal definition
follows. In exercise 1.17 we introduce weak subsequences.

Definition 1.13 (subsequence) We say that (bn) is a subsequence of (an) if
there exists a sequence of natural numbers m1 < m2 < . . . such that for every
n,

bn = amn .

We denote this relation between (bn) and (an) by (bn) � (an).
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The relation � on the set of real sequences is reflexive and transitive. It is
easy to find sequences (an) a (bn) such that (an) � (bn) and (bn) � (an)
but (an) 6= (bn). The above definition extends without change to sequences
(an) ⊂ X in arbitrary sets X.

Proposition 1.14 (� preserves limits) Let (bn) � (an) and lim an = L ∈
R∗. Then lim bn = L too.

Proof. It follows at once from the definitions 1.9 and 1.13, the sequence (mn)
in the last definition satisfies that mn ≥ n for every n. 2

The following useful proposition holds and later we prove part 1 of it. Proofs
of parts 2 and 3 are left for exercise 1.16.

Proposition 1.15 (on subsequences) Let (an) ⊂ R and let A ∈ R∗. The
following hold.

1. There is a sequence (bn) such that (bn) � (an) and (bn) has a limit.

2. The sequence (an) does not have a limit ⇐⇒ (an) has two subsequences
with different limits.

3. It is not true that lim an = A ⇐⇒ there is a sequence (bn) such that
(bn) � (an) and (bn) has a limit different from A.

So by part 2 one can always refute that a sequence in question has a limit by
exhibiting two subsequences with different limits. For example,

(an) := ((−1)n) = (−1, 1, −1, 1, −1, . . . )

does not have a limit because (1, 1, . . . ) � (an) and (−1,−1, . . . ) � (an).

Exercise 1.16 Prove parts 2 and 3 in the previous proposition.

Exercise 1.17 (weak subsequences) We say that (bn) is a weak subsequence
of (an) if there is a sequence (mn) ⊂ N such that

lim mn = +∞∧ ∀n : bn = amn
.

We denote this relation between (bn) and (an) by (bn) �∗ (an). Prove a gener-
alization of Proposition 1.14 that

(bn) �∗ (an) ∧ lim an = L⇒ lim bn = L .

• The limit of n-th root of n. Limits of sequences can be divided in “trivial”
and “non-trivial” ones. The former case occurs when no two growths (usually
to infinity) in the expression do not fight each other, else we have the latter
case. To put it in other words, a nontrivial limit is that of an indeterminate
expression, else the limit is trivial. For instance, the lim (2n + 3n) and lim 4

5n−3
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are trivial limits whereas the limits lim (2n − 3n) and lim 4n+7
5n−3 are non-trivial.

Often one can compute a non-trivial limit by transforming it algebraically in
a trivial limit, like in the above example with 3

√
n−
√
n:

3
√
n−
√
n; +∞− (+∞) =? but n1/2(n−1/6 − 1) ; (+∞) · (0− 1) = −∞ .

The next limit of n1/n is non-trivial because the base n→ +∞ but the exponent
1/n → 0 and (+∞)0 is a new indeterminate expression. We show that the
exponent prevails and n1/n → 1.

Proposition 1.18 (n1/n → 1) It holds that

lim
n→∞

n1/n = lim
n→∞

n
√
n = 1 .

Proof. Always n1/n ≥ 1. If n1/n 6→ 1, there is a number c > 0 and a sequence

2 ≤ n1 < n2 < . . . such that for every i one has that n
1/ni

i > 1 + c. By the
binomial theorem (exercise 1.19) one has for every i that

ni > (1 + c)ni =

ni∑
j=0

(
ni
j

)
cj = 1 +

(
ni
1

)
c+

(
ni
2

)
c2 + · · ·+

(
ni
ni

)
cni

≥ ni(ni − 1)

2
· c2

and so, for every i,

ni >
ni(ni − 1)

2
· c2 ; 1 +

2

c2
> ni .

The sequence n1 < n2 < . . . is not bounded from above and we have a contra-
diction. 2

Exercise 1.19 (Binomial Theorem) Give some proof of it. The theorem
says that for every two formal variables x and y and every exponent n ∈ N0

one has the identity

(x+ y)n = (x+ y) · (x+ y) · . . . · (x+ y)︸ ︷︷ ︸
n factors

=

n∑
j=0

(
n

j

)
xjyn−j .

Here, for every j, n ∈ N,(
n

j

)
=
n(n− 1) . . . (n− j + 1)

j!

is so called binomial coefficient, where j! = 1 · 2 · . . . · j is the factorial function.
For every n ∈ N0 we set

(
n
0

)
:= 1. Also every power with exponent 0 is defined

as 1.
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• Robust properties of sequences. Below we present four theorems (1.25, 1.28,
1.31 and 1.35) on existence of limits of real sequences. Exercise 1.10 shows
that the limit of a sequence (its existence and value) is insensitive to changes of
only finitely many terms in the sequence. Hence properties of sequences ensuring
existence of limits should be also robust in the same sense, should resist changes
of only finitely many terms in the sequences. Here is the formal definition.

Definition 1.20 (robustness) A robust property of sequences of real numbers
is any set of real sequences

X ⊂ RN ,

such that if (an) ∈ X and (bn) ⊂ R satisfies bn = an for every n ≥ n0 then
(bn) ∈ X.

Definition 1.21 ((un)bounded sequences) A sequence (an) ⊂ R is

• bounded from above if there is a c such that an < c for every n,

• unbounded from above if such c does not exist,

• bounded from below if there is a c such that an > c for every n,

• unbounded from below if such c does not exist,

• bounded if it is bounded both from below and from above.

Exercise 1.22 Show that each of the five properties of sequences in the previous
definition is robust.

• Monotone sequences. Often one can see the next theorem on monotone se-
quences stated only for sequences (an) monotone for every n. But this is not
a robust property. In our four theorems on existence of limits of sequences we
employ only robust properties.

Definition 1.23 (monotonićıty) A sequence (an) is

• non-decreasing if an ≤ an+1 for every n,

• non-decreasing from n0 if an ≤ an+1 for every n ≥ n0 for some n0,

• non-increasing if an ≥ an+1 for every n,

• non-increasing from n0 if an ≥ an+1 for every n ≥ n0 for some n0,

• monotonous (monotone) if it is non-decreasing or non-increasing,

• monotonous (monotone) from n0 if it is non-decreasing from n0 or non-
increasing from n0 for some n0.

Strict inequalities an < an+1, resp. an > an+1, yield (strictly) increasing, resp.
(strictly) decreasing, sequences.
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Exercise 1.24 Which of the six properties in the previous definition is robust?

Theorem 1.25 (on monotone sequences). Every real sequence (an) that is
monotone from n0 has a limit. If (an) is non-decreasing from n0 then

lim
n→∞

an =

{
sup({an | n ≥ n0}) ∈ R . . . (an) is bounded from above and
+∞ . . . (an) is unbounded from above.

If (an) is non-increasing from n0 then

lim
n→∞

an =

{
inf({an | n ≥ n0}) ∈ R . . . (an) is bounded from below and
−∞ . . . (an) is unbounded from below.

Proof. We consider only the first case of a sequence non-decreasing from n0,
the other case is similar. When (an) is unbounded from above then for any
given c there exists an m such that am > max(c, a1, a2, . . . , an0

). Thus am > c
and m > n0, and therefore for every n ≥ m,

an ≥ an−1 ≥ · · · ≥ am > c; an > c

and an → +∞.
For (an) bounded from above we set s := sup({an | n ≥ n0}). Let an ε > 0

be given. By the definition of supremum there exists an m ≥ n0 such that
s− ε < am ≤ s. Therefore for every n ≥ m,

s− ε < am ≤ am+1 ≤ · · · ≤ an−1 ≤ an ≤ s; s− ε < an ≤ s

and an → s. 2

• Quasi-monotonous (quasi-monotone) sequences. This is a supplementary pas-
sage.

Definition 1.26 (quasi-monotonicity) A sequence (an) is quasi-monotone
from n0 if

n ≥ n0 ⇒ every set {m | am < an} is finite

or
n ≥ n0 ⇒ every set {m | am > an} is finite ,

for some n0.

Any sequence monotonous from n0 is quasi-monotonous from the same n0.

Exercise 1.27 Give an example of a sequence that is not monotone from n0
for any n0 but is quasi-monotone from some n0.

The next theorem uses parameters lim sup and lim inf of sequences that are
always defined and may attain values ±∞, and that will be introduced in the
next lecture.
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Theorem 1.28 (on quasi-monotone sequences). Every sequence (an) ⊂ R
that is quasi-monotone from n0 has a limit. If (an) satisfies the first, resp. the
second, condition in Definition 1.26 then

lim an = lim sup an ∈ R∗, resp. lim an = lim inf an ∈ R∗ .

Proof. We only consider the case that (an) satisfies the first condition for some
n0, the other case is similar. Let (an) be unbounded from above and a c be
given. Thus there is an m ≥ n0 such that am > c. By the first condition there
is a k such that an ≥ am > c for every n ≥ k. Hence an → +∞ = lim sup an.
Let (an) be bounded from above, s := lim sup an ∈ R and let an ε be given. By
the definition of lim sup an, in

s− ε < am < s+ ε

the first inequality holds for infinitely many m and the second one for every
m ≥ m0. By the first condition there is a k such that s− ε < an < s+ ε holds
for every n ≥ k. Thus an → s = lim sup an. 2

Quasi-monotone sequences, for which n0 = 1, were introduced by the English
mathematician Godfrey H. Hardy (1877–1947).

• The Bolzano–Weierstrass theorem. The following auxiliary result is of interest
by itself.

Proposition 1.29 (monotone subsequence) Every sequence of real num-
bers has a monotone subsequence.

Proof. For a given sequence (an) we define the set

M := {n | ∀m : n ≤ m⇒ an ≥ am} .

If it is infinite, M = {m1 < m2 < . . . }, then (amn) is a non-increasing subse-
quence. If M is finite, we take a number m1 > max(M). Then m1 6∈ M and
there is a number m2 > m1 such that am1

< am2
. Since m2 6∈ M , there is

a number m3 > m2 such that am2
< am3

. And so on, we have a non-decreasing,
in fact strictly increasing, subsequence (amn

). 2

The theorem on monotone sequences and the previous proposition have as
immediate corollaries the following two results. The first one is part 1 of Propo-
sition 1.15.

Corollary 1.30 (subsequence with limit) Every sequence of real numbers
has a subsequence that has a limit.

Theorem 1.31 (Bolzano–Weierstrass theorem) Every bounded sequence of
real numbers has a convergent subsequence.
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Karl Weierstrass (1815–1897) was a German mathematician, he was a “father
of modern mathematical analysis”. The priest, philosopher and mathematician
Bernard Bolzano (1781–1848) had Italian, German and Czech roots. A street
near the main railway station in Prague is named after him, in Celetná street
a plaque commemorates him and his grave can be found in Oľsanské hřbitovy
(cemetery).

Exercise 1.32 Prove this version of the Bolzano–Weierstrass theorem: for ev-
ery real numbers a ≤ b, every sequence

(an) ⊂ [a, b]

has a convergent subsequence with limit in the interval [a, b].

• The Cauchy condition. The terms in Cauchy sequences get arbitrarily close
each to the other as their indices grow. Formal definition follows.

Definition 1.33 (Cauchy sequences) A sequence (an) ⊂ R is Cauchy if

∀ ε ∃n0 : m, n ≥ n0 ⇒ |am − an| < ε ,

i.e., am ∈ U(an, ε).

Clearly, this is a robust property of sequences.

Exercise 1.34 Prove that every Cauchy sequence of real numbers is bounded.

Theorem 1.35 (Cauchy condition) Let (an) ⊂ R. Then (an) is convergent
if and only if (an) is Cauchy.

Proof. The implication ⇒. Let lim an = a and an ε be given. Then there is
an n0 such that n ≥ n0 ⇒ |an − a| < ε/2. Thus

m, n ≥ n0 ⇒ |am − an| ≤ |am − a|+ |a− an| < ε/2 + ε/2 = ε

and (an) is a Cauchy sequence. We used the expression am − an = (am − a) +
(a− an) and the triangle inequality |c+ d| ≤ |c|+ |d|.

The implication ⇐. Let (an) be a Cauchy sequence. As we know, (an) is
bounded and therefore by the Bolzano–Weierstrass theorem it has a convergent
subsequence (amn

) with a limit a. So for a given ε we have an n0 such that
n ≥ n0 ⇒ |amn

− a| < ε/2 and that m,n ≥ n0 ⇒ |am − an| < ε/2. Always
mn ≥ n, hence

n ≥ n0 ⇒ |an − a| ≤ |an − amn |+ |amn − a| < ε/2 + ε/2 = ε

and an → a. 2

Interestingly, the French mathematician Augustin-Louis Cauchy (1789–1857)
also lived in Prague for some time, in political exile in 1833–1838.
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Exercise 1.36 (triangle inequality) Prove that for arbitrary real numbers
a1, a2, . . . , an,

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an| .

Exercise 1.37 Give an example of a Cauchy sequence (an) ⊂ Q with irrational
limit. The previous theorem therefore does not hold in the ordered field Q— it
happens because Q is not complete.

Exercise 1.38 Where was completeness of the real numbers used in the previ-
ous proof?
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