
LECTURE 9, 4/13/2022

TAYLOR POLYNOMIALS AND SERIES. PRIMITIVES

• An announcement. In lecture 7 I simplified and extended the

definition of derivative of a function at a point — limit points suf-

fice — and I modified lectures 7 and 8 accordingly, lecture eighth has

hardly changed. Today’s lecture culminates with a complete proof

of the existence of a primitive function of any continuous function.

Before that we discuss Taylor polynomials and series.

• Taylor polynomials. In Lecture 7, after defining derivative, we

learned that differentiability of a function f : M → R at a limit

point a ∈M ⊂ R of M provides the linear approximation

f (x) = f (a) + f ′(a) · (x− a) + o(x− a) (x→ a) .

In the following theorem, which is also a definition, we use higher-

order derivatives to strengthen the approximation by means of poly-

nomials.

Theorem 1 (Taylor polynomial) Let n ∈ N0 and let

f : U(b, δ) → R be a function with finite f (n)(b) ∈ R. For

n = 0, this means that f is continuous at b. Then there is

exactly one polynomial

p(x) :=

n∑
j=0

aj(x− b)j, aj ∈ R, s. t. lim
x→b

f (x)− p(x)

(x− b)n
= 0︸ ︷︷ ︸

(0)

.

Its coefficients are given by the formula aj = f (j)(b)/j!. We

call it the Taylor polynomial of the function f of order n

centered at b and denote it as T f,bn (x).
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T f,bn (x) equals

f (b) + f ′(b) · (x− b) +
f ′′(b)

2
· (x− b)2 + · · · + f (n)(b)

n!
· (x− b)n

and the linear approximation above is T f,a1 (x). Also, T f,b0 (x) = f (b)

and for every n ∈ N we have the identity(
T f, bn (x)

)′
= T f

′, b
n−1(x) .

To prove Theorem 1 we need the following lemma.

Lemma 2 (on the zero polynomial) For any numbers

b ∈ R and n ∈ N0 and any polynomial p(x) =
∑n

j=0 ajx
n

with aj ∈ R one has the implication

lim
x→b

p(x)

(x− b)n
= 0⇒ ∀ j = 0, 1, . . . , n : aj = 0 .

Proof. Induction on n. For n = 0 it is true, a0/1 → 0 gives

a0 = 0. Let n > 0 and let the limit in the hypothesis of the

implication hold. Then p(b) = limx→b p(x) = 0. Thus b is a root of

p(x) and p(x) = (x − b) · q(x), where q(x) is a real polynomial of

degree at most n− 1. But

0 = lim
x→b

p(x)

(x− b)n
= lim

x→b

q(x)

(x− b)n−1
,

and by induction q(x) is the zero polynomial. Hence so is p(x). 2

Proof of Theorem 1. The assumption on f (n)(b) means that

(after possibly decreasing δ) for every j = 0, 1, . . . , n − 1 there

exists f (j) : U(b, δ) → R. First we prove that for p(x) = T f,bn (x)

the limit (0) holds. For n = 0 this follows from the continuity of f
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at b. For n = 1 we have by the theorem on arithmetic of limits of

functions that the limit

lim
x→b

f (x)−
T
f, b
1 (x)︷ ︸︸ ︷

(f (b) + f ′(b) · (x− b))
x− b

= lim
x→b

f (x)− f (b)

x− b
− lim

x→b
f ′(b)

indeed equals f ′(b) − f ′(b) = 0. For n ≥ 2 we get by l’Hospital’s

rule, the identity above and induction on n that

lim
x→b

f (x)− T f, bn (x)

(x− b)n
= lim

x→b

(
f (x)− T f, bn (x)

)′
((x− b)n)′

= (1/n) lim
x→b

f ′(x)− T f
′, b

n−1(x)

(x− b)n−1
= (1/n) · 0 = 0 .

Let p(x) =
∑n

j=0 bjx
j with bj ∈ R be any polynomial for which

the limit (0) holds. Then

lim
x→b

p(x)− T f, bn (x)

(x− b)n
= lim

x→b

p(x)− f (x)

(x− b)n
+ lim

x→b

f (x)− T f, bn (x)

(x− b)n
= 0 + 0 = 0 .

Thus, according to the previous lemma, p(x) = T f,bn (x). 2

We state concisely the strengthened approximation.
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Corollary 3 (Taylor approximation) If n ∈ N0 and

f : U(b, δ) → R is a function with finite f (n)(b) ∈ R (i.e.,

f is continuous at b for n = 0), then for x ∈ U(b, δ) and

x→ b,

f (x) = T f, bn (x)+o((x−b)n) =

n∑
j=0

f (j)(b)

j!
(x−b)j+o((x− b)n)︸ ︷︷ ︸

e(x)

.

The notation o(. . . ) means that limx→b e(x)/(x− b)n = 0.

• Taylor polynomials of elementary functions. We present sev-

eral Taylor polynomials centered at 0. We justify these formulas,

calculate a few limits with them, and discuss when the extension of

Taylor polynomials of f to an infinite series converges to f (x). In

the following formulas n ∈ N0 is arbitrary.

1. f (x) = expx has TP T f,0n (x) =
∑n

j=0 x
j/j!.

2. f (x) = sinx has TP T f,02n+1(x) =
∑n

j=0(−1)jx2j+1/(2j + 1)!.

3. f (x) = cosx has TP T f,02n (x) =
∑n

j=0(−1)jx2j/(2j)!.

4. For ∀ a ∈ R, f (x) = (1 + x)a has TP T f,0n (x) =
∑n

j=0

(
a
j

)
xj.

Here (
a
j

)
= a(a− 1)(a− 2) . . . (a− j + 1)/j! ,

with
(
a
0

)
:= 1, is the generalized binomial coefficient.

5. f (x) = log(1 + x) has TP T f,0n (x) =
∑n

j=1(−1)j+1xj/j for

n > 0 and T f,00 (x) = 0.

6. f (x) = log
(

1
1−x
)

has TP T f,0n (x) =
∑n

j=1 x
j/j for n > 0 and

T f,00 (x) = 0.
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7. f (x) = arctanx, the inverse tangent, has TP T f,02n+1(x) =∑n
j=0(−1)jx2j+1/(2j + 1).

8. f (x) = arcsinx, i.e., the inverse sine, has TP T f,02n+1(x) =∑n
j=0

(
j−1/2
j

)
x2j+1/(2j + 1).

9. f (x) = arccosx, the inverse cosine, has TP T f,02n+1(x) = π/2−∑n
j=0

(
j−1/2
j

)
x2j+1/(2j + 1).

Proof of Formula 1. Clearly, exp(j)(x) = exp(x) for every

j ∈ N0 and exp(0) = 1. 2

Proof of Formula 2. Clearly, sin(j)(x) = sinx for j ≡ 0

(mod 4), sin(j)(x) = cosx for j ≡ 1 (mod 4), sin(j)(x) = − sinx for

j ≡ 2, (mod 4), sin(j)(x) = − cosx for j ≡ 3 (mod 4) and sin 0 = 0

and cos 0 = 1. 2

Proof of Formula 3. Similarly to the previous derivation. 2

Proof of Formula 4. For any x ∈ (−1, 1), any j ∈ N0 and any

a ∈ R,

((1 + x)a)(j) = a(a− 1) . . . (a− j + 1)(1 + x)a−j ,

with ((1 + x)a)(0) = (1 + x)a. Clearly, (1 + 0)a−j = 1. 2

Proof of Formula 5. For any x ∈ (−1, 1) and any j ∈ N,

(log(1 + x))(j) = (−1)(−2) . . . (−j + 1) · (1 + x)−j

= (−1)j+1(j − 1)! · (1 + x)−j

and (log(1 + x))(0) = log(1 + x). Clearly, log(1 + 0) = 0 and

(1 + 0)−j = 1. 2
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Proof of Formula 6. It follows from the previous formula be-

cause on (−1, 1), log
(

1
1−x
)

= − log(1 + (−x)). 2

Proof of Formula 7. (arctanx)(0) = arctanx and

(arctanx)(1) =
1

1 + x2
=

1

2i

(
1

x− i
− 1

x + i

)
.

Thus for every j ∈ N,

(arctanx)(j) = − i
2
· (−1)j−1(j − 1)!

(
(x− i)−j − (x + i)−j

)
.

Also, (arctanx)(0)(0) = 0 and for any even j ≥ 2 we have that

(arctanx)(j)(0) = 0 too. For every odd j ∈ N,

(arctanx)(j)(0) =
i

2
· (−1)j−1︸ ︷︷ ︸

=i2j−2

(j − 1)! · 2 · i−j

= ij−1(j − 1)! = (−1)(j−1)/2(j − 1)! .

2

However, we differentiated complex functions of the real variable

here. We therefore derive this Taylor polynomial again without

using C.

Proposition 4 (TP of f from TP of f ′) We suppose

that f : U(0, δ) → R has finite f ′ : U(0, δ) → R and finite

f (n+1)(0) ∈ R, n ∈ N0. Then for x→ 0,

f ′(x) =

n∑
j=0

ajx
j + o(xn), aj ∈ R ,

⇒ f (x) = f (0) +

n∑
j=0

aj
j + 1

· xj+1 + o(xn+1) .
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Proof. We work with center 0. By Theorem 1 on the uniqueness

of TP, it follows from the hypothesis of the implication that for

j = 0, 1, . . . , n, aj = f (j+1)(0)/j!. By the same theorem, the

coefficient of xj+1 in the TP of the function f is equal to

f (j+1)(0)

(j + 1)!
=

aj
j + 1

.

2

Thus the TP of the function arctanx is obtained from the TP

T f,02n (x) =
∑n

j=0(−1)jx2j of the derivative arctan′(x) = 1
1+x2

. We

get this TP from (partial sums of) the geometric series 1
1+x2

=

1− x2 + x4 − . . . , x ∈ (−1, 1). 2

Proof of Formula 8. This follows immediately from the TP of

arcsin′(x) = (1− x2)−1/2, Proposition 4 and formula 4. 2

Proof of Formula 9. Proceed as in the previous derivation. 2

• Computing limits by Taylor polynomials. We will use Corol-

lary 3. Using T f,01 in Formula 2, we immediately see that

lim
x→0

sinx

x
= lim

x→0

x + o(x)

x
= lim

x→0

x

x
+ lim

x→0

o(x)

x
= 1 + 0 = 1 .

Or, using T f,02 in Formula 3,

lim
x→0

x4

(cosx− 1)2
= lim

x→0

x4

(1− x2/2− 1 + o(x2))2

= lim
x→0

x4

x4/4 + o(x4)
= lim

x→0

1
1
4 + o(x4)/x4

= 4 .
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V. I. Arnold’s booklet Gjujgens i Barrou, N’juton i Guk (Nauka,

Moskva 1989) mentions on p. 21 the problem

lim
x→0

sin(tanx)− tan(sinx)

arcsin(arctanx)− arctan(arcsinx)
=?

Taylor polynomials may not be the best approach here (but why?).

See https://kam.mff.cuni.cz/~klazar/ArnoldLimEng.pdf,

if and when I write it down.

• Taylor series. Taylor series of a function arises from its Taylor

polynomials by extending them to infinity.

Definition 5 (Taylor series) Let f : U(a, δ) → R have

finite f (n) : U(a, δ) → R for every n ∈ N0. If for every

x ∈ U(a, δ),

f (x) =

∞∑
n=0

f (n)(a)

n!
· (x− a)n ,

we say that the function f is on U(a, δ) the sum of its

Taylor series
∑∞

n=0 f
(n)(a) · (x− a)n/n! centered at a.

Hence Taylor polynomials are partial sums of Taylor series. The

following theorem shows when the situation of the previous defini-

tion occurs. For n ∈ N0 and a function f : U(a, δ)→ R with finite

f (n)(a) ∈ R, we define the remainder of the Taylor polynomial

T f,an (x) as

Rf, a
n (x) := f (x)− T f, an (x), x ∈ U(a, δ) .
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Theorem 6 (remainders of TP) Suppose that n ∈ N0

and that f : U(a, δ) → R with finite f (n+1) : U(a, δ) → R.

Then the following holds.

1. (Lagrange’s remainder) ∀x ∈ P (a, δ) ∃ c between a and

x such that

Rf, a
n (x) =

f (n+1)(c)

(n + 1)!
· (x− a)n+1 .

2. (Cauchy’s remainder) ∀x ∈ P (a, δ) ∃ c between a and

x such that

Rf, a
n (x) =

f (n+1)(c) · (x− c)n

n!
· (x− a) .

Proof. We prove more generally that for any g : U(a, δ) → R
with finite and nonzero g′ : U(a, δ)→ R and any x ∈ P (a, δ) there

is a number c between a and x such that

Rf, a
n (x) =

1

n!
· g(x)− g(a)

g′(c)
· f (n+1)(c) · (x− c)n . (R)

Then Lagrange’s remainder arises for g(t) := (x−t)n+1 and Cauchy’s

for g(t) := t.

Let x ∈ P (a, δ) and the function g be as stated. Consider the

auxiliary function

F (t) := f (x)−
n∑
i=0

f (i)(t)

i!
· (x− t)i .

We apply to F , g and the interval I with endpoints a and x

Cauchy’s mean value theorem. On this interval F is continuous,
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F (x) = 0, F (a) = f (x)− T f,an (x), g(a) 6= g(x) (due to Lagrange’s

mean value theorem) and on I ,

F ′(t) = −f ′(t)−
n∑
i=1

(
f (i+1)(t)

i!
· (x− t)i − f (i)(t)

i!
· i(x− t)i−1

)
= −f

(n+1)(t)

n!
· (x− t)n .

By Cauchy’s mean value theorem (equality (∗)) there exists a num-

ber c ∈ I0 such that

−f (x)− T f,an (x)

g(x)− g(a)
=
F (x)− F (a)

g(x)− g(a)

(∗)
=
F ′(c)

g′(c)
= −f

(n+1)(c) · (x− c)n

n! · g′(c)
.

Now the relation (R) follows by a simple rearrangement. 2

For all nine formulas for TP above we state for which x ∈ R they

give Taylor series of f centered at 0 and converging to f (x). We

omit the proofs, they follow easily from the previous theorem.

1. ∀x ∈ R, ex =
∑

n≥0 x
n/n!.

2. ∀x ∈ R, sinx =
∑

n≥0(−1)nx2n+1/(2n + 1)!.

3. ∀x ∈ R, cosx =
∑

n≥0(−1)nx2n/(2n)!.

4. ∀x ∈ (−1, 1) and ∀ a ∈ R, (1 + x)a =
∑

n≥0
(
a
n

)
xn.

5. ∀x ∈ (−1, 1), log(1 + x) =
∑

n≥1(−1)n+1xn/n .

6. ∀x ∈ (−1, 1), log
(

1
1−x
)

=
∑

n≥1 x
n/n.

7. ∀x ∈ (−1, 1), arctanx =
∑

n≥0(−1)nx2n+1/(2n + 1).

8. ∀x ∈ (−1, 1), arcsinx =
∑

n≥0
(
n−1/2
n

)
x2n+1/(2n + 1).
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9. ∀x ∈ (−1, 1), arccosx = π
2 −

∑
n≥0
(
n−1/2
n

)
x2n+1/(2n + 1).

Some of these expansions hold in larger domains. Expansion 4 with

a ∈ N0 holds ∀x ∈ R, expansion 5 holds also for x = 1, expansion 6

also for x = −1, expansion 7 also for x = 1 and expansions 8 and 9

also for x = −1.

Coefficients in Taylor series can often be interpreted combinato-

rially. We give without proof one example of many.

Proposition 7 (Bell numbers Bn) For any x ∈ (−1, 1)

it is true that

ee
x−1 = exp(exp(x)− 1) =

∞∑
n=0

Bnx
n

n!

where Bn is the number of partitions of an n-element set.

For example, B3 = 5 because of the five partitions {{1, 2, 3}},
{{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}} and {{1}, {2}, {3}} of

the set {1, 2, 3}.
• Primitive functions. An interval I ⊂ R is non-trivial if I 6=
∅, {a} for every a ∈ R. Non-trivial are exactly those non-empty

intervals, each point of which is their limit point.
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Definition 8 (primitives) For any functions F, f : I →
R defined on a non-trivial interval I ⊂ R, we say that F

is a primitive (function) of f , and write F =
∫
f , if F has

finite derivative on I and

∀ b ∈ I : F ′(b) = f (b) .

Sometimes F is also called an antiderivative of f .

We emphasize that for every b ∈ I , including endpoints, here F ′(b)

always means the ordinary, two-sided derivative; other texts on

analysis often differ in this because they define ordinary deriva-

tive only in interior points. It follows from the earlier result on

derivatives that every primitive function is continuous. For exam-

ple, ax2/2 + bx + c is a primitive of the linear function ax + b on

any nontrivial interval, ex is on R a primitive of itself, c+arcsin x is

on (−1, 1) an antiderivative of the function 1/
√

1− x2 and 2x3/2/3

is a PF of
√
x on [0,+∞).

Antiderivative of a given function is not determined uniquely, but

every two of them differ only by a constant shift.

Theorem 9 (non-uniqueness of PF) F1, F2, f : I → R
are functions defined on a nontrivial interval I ⊂ R and

both F1 and F2 are primitives of f . Then there is a c ∈ R
such that

F1 − F2 = c on I .

Conversely, if F is a primitive of f then for every c ∈ R
also F + c is a primitive of f .

12



Proof. Let F1, F2, f and I be, as stated, and a < b be any two

numbers from I . By Lagrange’s mean value theorem, used for the

function F1 − F2 and the interval [a, b], there exists a c ∈ (a, b)

such that

(F1 − F2)(b)− (F1 − F2)(a)

b− a
= (F1 − F2)

′(c) = F ′1(c)− F ′2(c)

= f (c)− f (c) = 0 .

So F1(b)− F2(b) = F1(a)− F2(a) and F1(x)− F2(x) = c for some

constant c and every x ∈ I .

The second claim is clear, (F + c)′ = F ′ + c′ = f + 0 = f . 2

In the rest of the lecture we prove that every continuous function

has an antiderivative. We have to prepare for it some tools.

• Exchange of limits and derivatives. We prove a theorem de-

scribing situations when one can swap limit for n→∞ and differ-

entiation, without changing the result. We use this theorem below

to prove Theorem 16 on existence of antiderivatives. But first we

have to introduce pointwise and uniform convergence and prove the

Moore–Osgood theorem.

Definition 10 (fn → f) M ⊂ R is a set and f, fn : M →
R for n ∈ N are functions. When

∀ ε ∀x ∈M ∃n0 : n ≥ n0 ⇒ |fn(x)− f (x)| < ε ,

we write fn → f (on M) and say that the functions fn
converge on M pointwisely to f .

Thus for every x ∈M , lim fn(x) = f (x).
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Definition 11 (fn ⇒ f) M ⊂ R is a set and f, fn : M →
R for n ∈ N are functions. When

∀ ε ∃n0 ∀x ∈M : n ≥ n0 ⇒ |fn(x)− f (x)| < ε ,

we write fn ⇒ f (on M) and say that the functions fn
converge on M uniformly to f .

Now one requires more: single n0 works for every x ∈ M . Clearly,

fn ⇒ f implies that fn → f , but the converse in general does not

hold.

The following theorem is also called the Moore–Osgood theorem.

Theorem 12 (swapping limits) Let fn, f : M → R,

where n ∈ N and M ⊂ R, let fn ⇒ f (on M), A ∈ R∗ be

a limit point of M and let limx→A fn(x) =: an ∈ R for every

n. Then the following finite limits exist and are equal:

lim an = lim
x→A

f (x), i.e., lim
n→∞

lim
x→A

fn(x) = lim
x→A

lim
n→∞

fn(x) .

Proof. From fn ⇒ f (on M) it follows that (fn(x)) ⊂ R is

uniformly Cauchy for x ∈ M , that is, for every ε there is an n0
such that for every x ∈M and every m,n ≥ n0,

|fm(x)− fm(x)| < ε .

Then for every two fixed indices m,n ≥ n0 the limit transition

limx→A gives the inequality |am − an| ≤ ε. Thus (an) ⊂ R is

a Cauchy sequence and has a finite limit lim an =: a ∈ R. The
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next estimate holds for every n ∈ N and every x ∈M :

|f (x)− a| ≤ |f (x)− fn(x)|︸ ︷︷ ︸
V1

+ |fn(x)− an|︸ ︷︷ ︸
V2

+ |an − a|︸ ︷︷ ︸
V3

.

Let an ε be given. Because lim an = a, there exists an n0 such

that n ≥ n0 ⇒ V3 < ε/3. Because fn ⇒ f (on M), there exists

an n1 such that n ≥ n1 ⇒ V1 < ε/3 for every x ∈ M . Let

m ≥ max(n0, n1). Since limx→A fm(x) = am, we can take a δ such

that V2 < ε/3 for n := m and every x ∈ P (A, δ) ∩M . Thus for

n := m and every x ∈ P (A, δ) ∩M ,

|f (x)− a| ≤ ε/3 + ε/3 + ε/3 = ε

and limx→A f (x) = a = lim an. 2

Here is the theorem that swaps limits and derivatives.

Theorem 13 (swapping df/dx and limn→∞) For n ∈ N
let fn : I → R be functions defined on a nontrivial interval

I ⊂ R and such that the following three conditions hold.

1. For every n there exists f ′n : I → R.

2. f ′n ⇒ f (on I) for some function f : I → R.

3. There exists an a ∈ I such that the sequence (fn(a)) ⊂
R converges.

Then fn → F (on I) for some function F : I → R, there

exists F ′ : I → R and

F ′ = f on I, i.e.,
(

lim
n→∞

fn
)′

= lim
n→∞

f ′n .
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Proof. Let fn, I , f and a be, as stated, and let b ∈ I be any

point. First we prove that the sequence (fn(b)) ⊂ R is Cauchy. For

b = a this is true by Condition 3, so we can assume that for example

a < b, the case with b < a is treated similarly. Let an ε be given. It

follows from Conditions 2 and 3 that the sequence of functions (f ′n)

is uniformly Cauchy on I and that the sequence (fn(a)) is Cauchy.

So there exists an n0 such that m,n ≥ n0 ⇒ |f ′m(x)− f ′n(x)| < ε

for every x ∈ I and also m,n ≥ n0 ⇒ |fm(a) − fn(a)| < ε. We

take two arbitrary indices m,n ≥ n0 and use Lagrange’s mean

value theorem for the function fm− fn and the interval [a, b]. This

gives for some number c ∈ (a, b) the equality and estimate

(fm − fn)(b)− (fm − fn)(a)

b− a
= (fm − fn)′(c)

and

|fm(b)− fn(b)| ≤ |b− a| · |f ′m(c)− f ′n(c)| + |fm(a)− fn(a)|
< (b− a)ε + ε = ε(b− a + 1) ,

respectively. So the sequence (fn(b)) is Cauchy, therefore conver-

gent, and for every b ∈ I we can define

F (b) := lim fn(b) ∈ R .

So we get the function F : I → R such that fn → F (on I).

We prove that F ′ = f on I . We use the previous theorem and
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then verify that its assumptions are satisfied. For any b ∈ I indeed

F ′(b) = lim
x→b

F (x)− F (b)

x− b

= lim
x→b

lim
n→∞

fn(x)− fn(b)

x− b
Theorem 12

= lim
n→∞

lim
x→b

fn(x)− fn(b)

x− b
= lim

n→∞
f ′n(b) = f (b) .

We check that in this use of Theorem 12 its assumptions are

satisfied. We use the theorem for the sequence of functions

gn(x) :=
fn(x)− fn(b)

x− b
: I \ {b} → R .

Of course, limx→b gn(x) = f ′n(b) for every n and also lim f ′n(b) =

f (b). It remains to check that gn ⇒ g (on I \ {b}) for the function

g(x) :=
F (x)− F (b)

x− b
.

For this we check that the sequence (gn(x)) is uniformly Cauchy on

I \ {b}. For every m,n ∈ N and every x ∈ I \ {b} we have the

identity

|gm(x)− gn(x)| =
|(fm(x)− fn(x))− (fm(b)− fn(b))|

|x− b|
(∗)
=

�����|x− b| · |f ′m(c)− f ′n(c)|
�����|x− b|

= |f ′m(c)− f ′n(c)|︸ ︷︷ ︸
V

, for a c between b and x .

We get it due to equality (∗) where Lagrange’s mean value theorem

is used for the function fm − fn and the interval with endpoints b
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and x. By Condition 2, for any given ε there exists an n0 such that

for every m,n ≥ n0 and every c ∈ I one has that |V | < ε. Thus

the sequence (gn(x)) is uniformly Cauchy on I \ {b} and the proof

is complete. 2

• Every continuous function has a primitive function. To prove

it we need one more tool.

Definition 14 (uniform continuity) Let M ⊂ R. The

function f : M → R is uniformly continuous (on M) if

∀ ε ∃ δ : a ∈M ⇒ f [U(a, δ) ∩M ] ⊂ U(f (a), ε) .

So one δ works for all points a ∈M .

Theorem 15 (continuity and compactness) Let M ⊂
R be a compact set. If a function f : M → R is continuous

then it is uniformly continuous.

Proof. We suppose that M ⊂ R is compact and that f : M → R
is not uniformly continuous. So there is an ε > 0 such that for every

n there are two points an, bn ∈ M such that |an − bn| < 1/n but

|f (an)−f (bn)| ≥ ε. We use compactness of M and select from (an)

and (bn) convergent subsequences with limits in M . For simplicity

of notation we assume that both (an) and (bn) already converge

and have limits lim an =: a ∈ M and lim bn =: b ∈ M . From

|an−bn| < 1/n it follows that a = b. But from |f (an)−f (bn)| ≥ ε

and the convergence of (an) and (bn) to a it follows that for every

δ,

f [U(a, δ) ∩M ] 6⊂ U(f (a), ε/2) .

18



Thus the function f is not continuous at a and f is not continuous

on M . 2

Theorem 16 (∃ antiderivative) Suppose that f : I →
R is a continuous function defined on a nontrivial inter-

val I ⊂ R. Then f has a primitive function F : I → R.

Brief proof. We first assume that I is compact, I = [a, b] with

a < b. A function g : I → R is a broken line if it is continuous

and there exists a partition a = a0 < a1 < · · · < ak = b of

I such that each restriction g | [ai−1, ai] is linear, i.e., of the form

g(x) = cix + di. By Theorem 15,

∀n ∃ broken line gn : x ∈ I ⇒ |f (x)− gn(x)| < 1/n .

Since
∫

(cx + d) = cx2/2 + dx + e, according to Proposition 6 in

the last lecture there exist Gn : I → R such that Gn =
∫
gn and

Gn(a) = 0. But then, since gn ⇒ f (on I) and G′n = gn on I , by

Theorem 13 there exists an F : I → R such that Gn → F (on I)

and, especially, F ′ = f on I , that is, F =
∫
f .

If the interval I is not compact, we write it as a union of nested

non-trivial compact intervals In: I1 ⊂ I2 ⊂ . . . and
⋃
n≥1 In = I .

On each In we take an appropriate Fn =
∫
f | In and then F :=⋃

n≥1 Fn is a primitive function of f on I . 2

See https://kam.mff.cuni.cz/~klazar/proofdet.pdf for de-

tails of the proof (when I write them down). P. Lundström, Prim-

itives of continuous functions via polynomials, https://arxiv.

org/abs/2204.05012 gives a similar proof, but with polynomials

in place of broken lines. In a simpler way we prove the theorem

later again by the Riemann integral.
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THANK YOU FOR YOUR ATTENTION!

20


