
LECTURE 6, 3/23/2022

PROPERTIES OF CONTINUOUS FUNCTIONS

• Heine’s definition of continuity at a point. From the last lec-

ture we know that continuity of a function f : M → R at a point

a ∈M ⊂ R means that

∀ ε ∃ δ : f [U(a, δ) ∩M ] ⊂ U(f (a), ε) .

In this lecture we will refer frequently (9×, to be precise) to the

next result.

Proposition 1 (Heine’s definition) f : M → R is con-

tinuous at a point a ∈M ⊂ R if and only if

∀ (an) ⊂M : lim an = a⇒ lim f (an) = f (a) .

Proof. We proved this equivalence as 1 ⇐⇒ 3 in Proposition 5

in the last lecture for limit points. If a ∈M is an isolated point of

M then f is continuous at a by Proposition 7 in the last lecture.

But then lim an = a means that an = a for every n ≥ n0. Hence

f (an) = f (a) for every n ≥ n0 and lim f (an) = f (a). 2

Definition 2 (continuity on a set) Let M ⊂ R and let

f : M → R. The function f is continuous (on M) if f is

continuous at every point of M .

• Dense sets. We introduce the relation of density of a set in

another set.
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Definition 3 (dense sets) Let N ⊂ M ⊂ R. We say

that the set N is dense in the set M if

∀ a ∈M ∀ δ : U(a, δ) ∩N 6= ∅ .

Let N ⊂ M ⊂ R. Clearly, N is dense in M iff for every point

a ∈ M there is a sequence (bn) ⊂ N such that lim bn = a. For

example, the set of fractions Q is dense in R.

Proposition 4 (density and continuity) Suppose that

N ⊂M ⊂ R, that N is dense in M and that f, g : M → R
are two continuous functions such that ∀x ∈ N : f (x) =

g(x). Then

f = g

— the functions f and g coincide.

Proof. Let y ∈M be any point and (an) ⊂ N be a sequence with

lim an = y. Then

f (y) = f (lim an) = lim f (an) = lim g(an) = g (lim an) = g(y) .

Here the 2nd and 4th equality follow from Proposition 1. The 3rd

equality follows from the assumption that f and g are equal on N .

Thus f = g completely. 2

Recall that if A ⊂ B and C are sets and f : B → C is a function,

its restriction to A is the function f |A : A → C given by ∀x ∈
A : (f |A)(x) := f (x).
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Theorem 5 (H. Blumberg, 1922) For any function

f : R → R there is a set M ⊂ R dense in R and such

that the restriction f |M is a continuous function.

Henry Blumberg (1886–1950) was an American mathematician

who was born in Lithuania.

• Counting continuous functions. For M ⊂ R we introduce the

notation

C(M) := {f : M → R | f is continuous} .

It is the set of all continuous real functions defined on the set M .

The next theorem is a basic result in set theory.

Theorem 6 (Cantor–Bernstein) If there exist injec-

tions f : X → Y and g : Y → X then there is a bijection

h : X → Y .

The map h can be chosen so that for every x ∈ X one has

that h(x) = f (x) or h(x) = g−1(x).

How many continuous functions f : R→ R are there? That many

as the real numbers.

Theorem 7 (counting cont. functions) There exists

a bijection h : R→ C(R).

Proof. By the previous theorem it suffices to find injections

f : R→ C(R) and g : C(R)→ R. The former one is obvious,

f (a) := (b 7→ a) ,
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i.e., f (a) is the constant function with the value a.

We describe the latter injection g : C(R) → R. We view the

numbers in R as infinite decimal expansions, for instance −π =

−3.141592 . . . or 2022.00000 . . . . By Proposition 4 every function

j ∈ C(R) is completely determined by the countably many values

j(x), x ∈ Q. Let r : N→ Q and s : N→ N× N be bijections, for

example (k, l, n ∈ N)

s(n) = s(2k−1 · (2l − 1)) = (s1(n), s2(n)) := (k, l) .

We encode the decimal digits 0, 1, . . . , 9, the decimal point . and

the minus sign − by two decimal digits:

c(0) := 00, c(1) := 01, . . . , c(9) := 09, c(.) := 10 and c(−) := 11 .

The map g : C(R)→ R has at the function j ∈ C(R) the value

g(j) := 0.a1 a2 a3 . . . a2n−1 a2n . . . =: α .

The digits an ∈ {0, 1, . . . , 9} are defined as follows. For k, l ∈ N
we consider the decimal expansions

j(r(k)) =: b(1, k) b(2, k) . . . b(l, k) . . .

of the values j(r(k)) of the function j on the fractions r(k) ∈ Q,

with symbols b(l, k) ∈ {0, 1, . . . , 9, .,−}. Then we set

a2n−1 a2n = c(b(l, k)) := c(b(s1(n), s2(n))) .

A short meditation reveals that the map g is injective: the single

decimal expansion α stores all values of the function j on all rational

numbers. 2

• Attaining intermediate values by continuous functions. The

image of the function sgn(x) is {−1, 0, 1}, but nothing else between
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these three points. Images of intervals by continuous functions can-

not look like this.

Theorem 8 (on intermediate values) Let a, b, c ∈ R,

a < b, f : [a, b] → R be a continuous function and let

f (a) < c < f (b) or f (a) > c > f (b). Then

∃ d ∈ (a, b) : f (d) = c .

Proof. We suppose that f (a) < c < f (b), the case that f (a) >

c > f (b) is treated similarly. Let

A := {x ∈ [a, b] | f (x) < c} and d := sup(A) ∈ [a, b] .

The number d is correctly defined because the set A is nonempty

(a ∈ A) and bounded from above (for instance, b is an upper

bound). We show that both f (d) < c and f (d) > c lead to contra-

diction, so that f (d) = c. The continuity of f at a and b implies

that d ∈ (a, b). Let f (d) < c. The continuity of f at d implies that

there is a δ such that x ∈ U(d, δ)∩ [a, b]⇒ f (x) < c. But then A

contains numbers larger than d, in contradiction with the fact that

d is an upper bound of A. Let f (d) > c. In the same vein, there

is a δ such that x ∈ U(d, δ) ∩ [a, b] ⇒ f (x) > c. But then every

x ∈ [a, d) sufficiently close to d lies outside of A, in contradiction

with the fact that d is the smallest upper bound of A. 2
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Corollary 9 (cont. image of an interval) Let I ⊂ R
be an interval (i.e., a convex set) and f : I → R be a con-

tinuous function. Then

f [I ] = {f (x) | x ∈ I} ⊂ R

is an interval too.

Proof. Theorem 8 shows that the set f [I ] is convex. 2

You may wish to attempt the following corollary of the theorem

on intermediate values as an exercise.

Corollary 10 (on climbing) A climber starts climbing

a mountain at midnight and reaches the summit exactly

after 24 hours, again at midnight. Then the climber de-

scends, again for exactly 24 hours, in the base camp. Prove

that there is a time t0 ∈ [0, 24] when the climber is in both

days in the same altitude.

We prove the next corollary. Recall that a function f : M → R
is increasing, resp. decreasing (on M ⊂ R), if for every x, y ∈M
one has that x < y ⇒ f (x) < f (y), resp. f (x) > f (y).

Corollary 11 (continuity and inject. on an interval)

Suppose that I ⊂ R is an interval and that f : I → R
is a continuous injective function. Then f is either

increasing or decreasing.

Proof. If f neither increases nor decreases then there exist three

number a < b < c in I such that f (a) < f (b) > f (c) or f (a) >
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f (b) < f (c). In the former case every d satisfying f (a), f (c) <

d < f (b) is attained, by Theorem 8, as d = f (x) = f (y) for some

x ∈ (a, b) and y ∈ (b, c). This contradicts the injectivity of f . In

the latter case we get a very similar contradiction. 2

• Continuous functions on compact sets. Compact sets play in

analysis and elsewhere (e.g., in optimization) an important role.

Definition 12 (compact sets) A set M ⊂ R is compact

if every sequence (an) ⊂ M has a convergent subsequence

(amn) with lim amn ∈M .

By the Bolzano–Weierstrass theorem and the theorem on limits of

sequences and order we know that every interval [a, b] is compact.

We characterize compact sets later and now prove on them an im-

portant theorem.

Theorem 13 (the min-max principle) Let M ⊂ R be

a nonempty compact set and f : M → R be a continuous

function. Then there exist points a, b ∈M such that

∀x ∈M : f (a) ≤ f (x) ≤ f (b) .

We say that f attains at a ∈ M its minimum (smallest

value) f (a) on M and that f attains at b ∈M its maximum

(largest value) f (b) on M .

Proof. We only prove the existence of the maximum of f , the

proof for the minimum is very similar. Clearly, f [M ] 6= ∅ and

we show that this set is bounded from above. Suppose not, then

there is a sequence (an) ⊂ M such that lim f (an) = +∞. By the
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compactness of M the sequence (an) has a convergent subsequence

(amn) with a := lim amn ∈ M . Then lim f (amn) = +∞ too. But

this contradicts the fact that by Proposition 1, lim f (amn) = f (a).

Thus we can define

s := sup(f [M ]) ∈ R

and by the definition of supremum there is a sequence (an) ⊂ M

with lim f (an) = s. Due to compactness of M the sequence (an)

has a convergent subsequence (amn) with b := lim amn ∈ M . By

Proposition 1 one has that lim f (amn) = f (b) = s. Since s = f (b)

is an upper bound of f [M ], we have that f (b) ≥ f (x) for every

x ∈M . 2

For non-compact M the theorem need not hold. For example,

the function f : [0, 1) → R, f (x) = 1
1−x, is continuous but not

bounded from above and does not have maximum. The function

f : [0, 1) → R, f (x) = x, is continuous and bounded from above

but still does not have maximum. We review the standard classifi-

cation of minima and maxima of functions as “global” and “local”.
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Definition 14 (global and local) Let a ∈ M ⊂ R and

let f : M → R be any function. The function f has on M

a global maximum, resp. a global minimum, at a if

∀x ∈M : f (x) ≤ f (a), resp. f (x) ≥ f (a) .

The function f has on M a local maximum, resp. a local

minimum, at a if

∃ δ ∀x ∈ U(a, δ) ∩M : f (x) ≤ f (a), resp. f (x) ≥ f (a) .

When strict inequalities (<, resp. >) hold for every x 6= a,

we speak of a strict global maximum, etc.

• Compact sets in R. We know when a set M ⊂ R is bounded:

∃ c ∀ a ∈M : |a| < c. It is closed if

∀ (an) ⊂M : lim an = a⇒ a ∈M .

It is open if

∀ a ∈M ∃ δ : U(a, δ) ⊂M .

Proposition 15 (closed sets) A set M ⊂ R is closed if

and only if the set R \M is open.

Proof. R \M is not open iff there is a point a ∈ R \M such

that for every δ, U(a, δ)∩M 6= ∅. Equivalently (choosing for every

n some an ∈ U(a, 1/n) ∩ M), there is a point a ∈ R \ M and

a sequence (an) ⊂M such that lim an = a. Equivalently, M is not

closed. 2

Using the following structural description of open sets one can rel-

atively easily imagine them. By open intervals we mean in it the
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intervals (−∞, a), (a,+∞) and (a, b) for a < b.

Proposition 16 (structure of open sets) A set M ⊂
R is open if and only if there is a system of open inter-

vals {Ij | j ∈ X} such that the index set X is at most

countable, the intervals Ij are mutually disjoint and⋃
j∈X

Ij = M .

Closed sets are complements of open sets and therefore they are

unions of “gaps” between the above intervals Ij. If |X| = n ∈ N0,

there are at most n + 1 gaps. What is hard to imagine is that for

countable X the set of gaps may be uncountable. This is the reason

that it is harder to imagine closed sets.

Theorem 17 (compact sets) Let M ⊂ R. Then M is

compact if and only if M is closed and bounded.

Proof. Let M ⊂ R be closed and bounded and let (an) ⊂ M be

any sequence. Since (an) is bounded, by the Bolzano–Weierstrass

theorem it has a convergent subsequence (amn) with a := lim amn ∈
R. Since M is closed, a ∈M . Thus M is compact.

Suppose that M ⊂ R is not bounded. We construct a sequence

(an) ⊂ M such that |am − an| > 1 for every two indices m 6= n.

This property is inherited by every subsequence which therefore

cannot be convergent andM is not compact. The first term a1 ∈M
is taken arbitrarily. Suppose that a1, a2, . . . , an have been defined

such that |ai− aj| > 1 for every i, j with 1 ≤ i < j ≤ n. Since M

is not bounded, there is a point an+1 ∈ M such that |an+1| > 1 +
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max(|a1|, . . . , |an|). Then |an+1− ai| > 1 for every i = 1, 2, . . . , n.

In this way we define the whole (an).

Suppose that M ⊂ R is not closed. Then there is a convergent

sequence (an) ⊂ M such that a := lim amn ∈ R \ M . Every

subsequence has the same limit a, and so it does not have limit in

M . Thus M is not compact. 2

• Continuity and various operations. We present several opera-

tions which produce new continuous functions from old ones. Recall

that for two functions f, g : M → R their sum, product and ratio

function is defined as (x ∈M)

(f + g)(x) := f (x) + g(x),

(fg)(x) := f (x) · g(x) and

(f/g) (x) := f (x)/g(x) ,

respectively.

Proposition 18 (arithmetic of continuity) Let M ⊂
R and f, g : M → R be continuous functions. Then the

sum and product function

f + g, fg : M → R

are continuous. If g 6= 0 on M then also the ratio function

f/g : M → R

is continuous.

Proof. All three proofs are similar and we only prove the part

with the ratio function. Let a ∈ M be any point and (an) ⊂ M
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be any sequence with lim an = a. By Proposition 1 (implication

⇒) one has that lim f (an) = f (a) and lim g(an) = g(a). By the

theorem on arithmetic of limits of sequences,

lim (f/g)(an) = lim f (an)/g(an) = lim f (an)/ lim g(an)

= f (a)/g(a) = (f/g)(a) .

By Proposition 1 (implication ⇐), the function f/g is continuous

at the point a. 2

Rational functions r(x) are ratios of two polynomials, i.e., func-

tion of the form

r(x) :=
amx

m + · · · + a1x + a0
bnxn + · · · + b1x + b0

: M → R ,

where ai, bi ∈ R, m,n ∈ N0 and ambn 6= 0; in the numerator we

allow also the identically zero polynomial. The definition domain

M of this function is the set

M = R \ {z1, z2, . . . , zk} ,

where zi ∈ R are all real roots of the polynomial in the denominator

(k ∈ N0 and k ≤ n).

Corollary 19 (continuity of rational functions)

Every rational function is continuous on its definition

domain.

Proof. The identical function f (x) = x and the constant functions

f (x) = c, c ∈ R, are continuous on R. Starting with them and

repeatedly applying the previous proposition we obtain that every

rational function is continuous. 2
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All earlier mentioned elementary functions exp(x), log x, cosx,

sinx, ax (a ≥ 0), arccosx, arcsinx, tanx, arctanx, cot x and

arccotx are continuous on their definition domains.

Proposition 20 (continuity and composition) Let

M,N ⊂ R and let g : M → N and f : N → R be con-

tinuous functions. Then the composite function

f (g) : M → R

is continuous.

Proof. Let a ∈ M be any point and (an) ⊂ M be any sequence

with lim an = a. By Proposition 1 (implication ⇒) one has that

lim g(an) = g(a) and also that

lim f (g)(an) = lim f (g(an)) = f (g(a)) = f (g)(a) .

By Proposition 1 (implication ⇐), f (g) is continuous at a. 2

We know that every injection f : A→ B has the inverse function

(or inverse) f−1 : f [A]→ A that is given by

∀ y ∈ f [A] ∀x ∈ A : f−1(y) = x ⇐⇒ f (x) = y .

Theorem 21 (continuity of inverses) Let M ⊂ R and

let f : M → R be a continuous injective function. Then the

inverse f−1 : f [M ]→M is continuous if (i) M is compact

or (ii) M is an interval.

Proof. (i) We assume that M is compact, b ∈ f [M ] is any

point and that (bn) ⊂ f [M ] is any sequence with lim bn = b. We

set a := f−1(b) ∈ M and an := f−1(bn) ∈ M . We show that
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lim an = a, which by Proposition 1 proves the continuity of f−1

at b. Let (amn) be any subsequence of the sequence (an) ⊂ M

with lim amn = L ∈ R∗. But L ∈ M because M is bounded and

closed (by Theorem 17). By Proposition 1, lim f (amn) = f (L) = b

because (f (amn)) is a subsequence of the sequence (bn). Due to the

injectivity of f , L = a. Thus the sequence (an) does not have two

subsequences with different limits and by part 2 of Proposition 6 in

Lecture 2 (an) has a limit. We have just proven that this limit is a.

(ii) Let M be an interval. By Corollary 11 the function f in-

creases or decreases. Suppose that f is decreasing, the increasing

case is similar. By Corollary 9 the image f [M ] is an interval. Let

b ∈ f [M ] and let an ε be given. We show that f−1 is right-

continuous at b. This is trivial when b is the right endpoint of the

interval f [M ] because then U+(b, δ) ∩ f [M ] = {b}. Suppose that

b is not the right endpoint of this interval. Since f−1 is decreasing,

a := f−1(b) ∈ M is not the left endpoint of the interval M and

we can assume that ε is so small that [a − ε, a] ⊂ M . We set

δ := f (a− ε)− f (a) = f (a− ε)− b. Since f−1 decreases, it maps

[b, b + δ] ⊂ f [M ] to [a− ε, a] ⊂M . Hence

f−1[U+(b, δ) ∩ f [M ]] ⊂ U(f−1(b), ε) = U(a, ε)

and f−1 is right-continuous at b. The left continuity is proven

similarly and we see that f−1 is continuous at b. 2

The theorem also holds for (iii) open M and (iv) closed M if f

increases or decreases, but we skip these proofs here. Part (ii) of

the theorem implies that log x and inverse trigonometric functions

are continuous.

14



THANK YOU FOR YOUR ATTENTION!
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