LECTURE 2, 2/23/2022 EXISTENCE THEOREMS FOR LIMITS OF SEQUENCES

• Review. Recall the real numbers \mathbb{R} and recall the natural numbers $\mathbb{N} = \{1, 2, ...\}$. We denote the latter by the letters $i, j, k, l, m, m_0, m_1, ..., n, n_0, n_1, \ldots$. The letters $a, b, c, d, e, \delta, \varepsilon$ and θ , possibly with indices, denote real numbers. Always $\delta, \varepsilon, \theta > 0$ and we think of them as close to 0. Recall that $(a_n) \subset \mathbb{R}$ is a real sequence.

• Computing with infinities. For the general notion of a limit we add to \mathbb{R} the infinities $+\infty$ and $-\infty$. We get the extended real axis

$$\mathbb{R}^* := \mathbb{R} \cup \{+\infty, -\infty\}$$
 .

We compute with infinities according to the following rules.

We always take only all upper or all lower signs:

$$\begin{aligned} A \in \mathbb{R} \cup \{\pm \infty\} \implies A + (\pm \infty) = \pm \infty + A := \pm \infty , \\ A \in (0, +\infty) \cup \{+\infty\} \implies A \cdot (\pm \infty) = (\pm \infty) \cdot A := \pm \infty , \\ A \in (-\infty, 0) \cup \{-\infty\} \implies A \cdot (\pm \infty) = (\pm \infty) \cdot A := \mp \infty , \\ A \in \mathbb{R} \implies \frac{a}{\pm \infty} := 0 , \end{aligned}$$

$$-(\pm \infty) := \mp \infty, -\infty < a < +\infty \text{ and } -\infty < +\infty.$$

Subtraction of an element $A \in \mathbb{R}^*$ reduces to adding -A and division by $a \neq 0$ means multiplication by 1/a. All remaining values of the operations, that is $(A \in \mathbb{R}^*)$

$$\frac{A}{0}$$
, $(\pm\infty) + (\mp\infty)$, $0 \cdot (\pm\infty)$, $(\pm\infty) \cdot 0$, $\frac{\pm\infty}{\pm\infty}$ and $\frac{\pm\infty}{\mp\infty}$,

are undefined, these are so called *indeterminate expressions*. Elements of \mathbb{R}^* are usually denoted by A, B, K and L.

• *Neighborhoods of points and infinities.* We remind the notation for real intervals:

$$(a, b] = \{ x \in \mathbb{R} \mid a < x \le b \}, \ (-\infty, a) = \{ x \in \mathbb{R} \mid x < a \}$$

etc.

Definition 1 (neighborhoods) For any $\varepsilon > 0$, the ε neighborhood of a point b and the deleted ε -neighborhood of b is defined, respectively, as $U(b, \varepsilon) := (b-\varepsilon, b+\varepsilon)$ and $P(b, \varepsilon) := (b-\varepsilon, b) \cup (b, b+\varepsilon)$, so that $P(b, \varepsilon) = U(b, \varepsilon) \setminus \{b\}$. An ε -neighborhood of infinity is $U(-\infty, \varepsilon) := (-\infty, -1/\varepsilon)$ and $U(+\infty, \varepsilon) := (1/\varepsilon, +\infty)$. We set $P(\pm \infty, \varepsilon) := U(\pm \infty, \varepsilon)$.

The main property of neighborhoods is that if $V, V' \in \{U, P\}$ then

$$A, B \in \mathbb{R}^*, A < B \Rightarrow \exists \varepsilon : V(A, \varepsilon) < V'(B, \varepsilon),$$

i.e., a < b for every $a \in V(A, \varepsilon)$ and every $b \in V'(B, \varepsilon)$. In particular, $A \neq B \Rightarrow \exists \varepsilon : V(A, \varepsilon) \cap V'(B, \varepsilon) = \emptyset$.

• Limits of sequences. By $(a_n), (b_n), (c_n) \subset \mathbb{R}$ we denote real sequences. The next definition belongs to fundamental ones in analysis (and in mathematics).

Definition 2 (limit of a sequence) Let (a_n) be a real sequence and $L \in \mathbb{R}^*$. If

 $\forall \varepsilon \exists n_0 : n \ge n_0 \Rightarrow a_n \in U(L, \varepsilon) ,$

we write that $\lim a_n = L$ and say that the sequence (a_n) has the limit L.

For $L \in \mathbb{R}$ we speak of a *finite* limit, and for $L = \pm \infty$ of an *infinite* limit. Sequences with finite limits *converge*, else they *diverge*. If lim $a_n = a \in \mathbb{R}$ then for every real (and arbitrarily small) $\varepsilon > 0$ there is an index $n_0 \in \mathbb{N}$ such that for every index $n \in \mathbb{N}$ at least n_0 the distance between a_n and a is smaller than ε :

$$|a_n-a|<\varepsilon.$$

If $\lim a_n = -\infty$ then for every (negative) $c \in \mathbb{R}$ there is an index n_0 such that for every index n at least n_0 ,

$$a_n < c$$
.

Similarly, with the inequality reversed, for the limit $+\infty$. We will use also the notation $\lim_{n\to\infty} a_n = L$ and $a_n \to L$. The simplest convergent sequence is the *eventually constant* sequence (a_n) with $a_n = a$ for every $n \ge n_0$, then of course lim $a_n = a$. The popular image of a limit that "a sequence gets closer and closer to the limit but never reaches it (possibly only in infinity)", is a poetic one but is incorrect.

Proposition 3 (uniqueness of lim) *Limits are unique,* lim $a_n = K$ and lim $a_n = L \Rightarrow K = L$. **Proof.** Let $\lim a_n = K$, $\lim a_n = L$ and let an ε be given. By Definition 2 there is an n_0 such that $n \ge n_0 \Rightarrow a_n \in U(K, \varepsilon)$ and $a_n \in U(L, \varepsilon)$. Thus $\forall \varepsilon : U(K, \varepsilon) \cap U(L, \varepsilon) \neq \emptyset$. By the main property of neighborhoods mentioned above, K = L. \Box

• Two limits. We show that $\lim \frac{1}{n} = 0$. It is clear because for every ε and every $n \ge n_0 := 1 + \lceil 1/\varepsilon \rceil$,

$$0 < \frac{1}{n} \leq \frac{1}{\underbrace{1 + \left\lceil 1/\varepsilon \right\rceil}_{> 1/\varepsilon}} < \frac{1}{1/\varepsilon} = \varepsilon \rightsquigarrow 1/n \in U(0, \, \varepsilon) \; .$$

Here $\lceil a \rceil \in \mathbb{Z}$ denotes the *upper integral part* of the number a, the least $v \in \mathbb{Z}$ such that $v \ge a$. Similarly, the *lower integral part* $\lfloor a \rfloor$ of the number a is the largest $v \in \mathbb{Z}$ such that $v \le a$. Our second example is that

$$\sqrt[3]{n} - \sqrt{n} \to -\infty$$

Indeed, for any given c < 0 and every $n \ge n_0 > \max(4c^2, 2^6)$,

$$\underbrace{\sqrt[3]{n - \sqrt{n}}}_{\sqrt[3]{n} - \sqrt{n}} = \underbrace{n^{1/2} \cdot \underbrace{(n^{-1/6} - 1)}_{n > 2^6 \Rightarrow \dots < -1/2}}_{n > 2^6 \Rightarrow \dots < -1/2} < \underbrace{-n^{1/2}}_{\dots < -2|c|} / 2 < -2|c|/2 = c .$$

It is not necessary to find an optimum n_0 in terms of ε or c. This is easy to do only in the simplest cases like $\lim \frac{1}{n}$, and else it may be complicated. It fully suffices to have some value n_0 such that for every $n \ge n_0$ the inequality (i.e., the membership) in the definition of limit holds. But to achieve it one still needs some skill in manipulating inequalities and estimates.

• Subsequences of sequences.

Definition 4 (subsequence) A sequence (b_n) is a subsequence of a sequence (a_n) if there is a sequence (of natural numbers) $m_1 < m_2 < \ldots$ such that for every n,

 $b_n = a_{m_n} \; .$

We will use the notation that $(b_n) \preceq (a_n)$.

It is clear that the relation \leq on the set of sequences is reflexive and transitive. It is easy to find sequences (a_n) and (b_n) such that $(a_n) \leq (b_n)$ and $(b_n) \leq (a_n)$ but $(a_n) \neq (b_n)$.

Proposition 5 (\leq preserves limits) Let $(b_n) \leq (a_n)$ and let $\lim a_n = L \in \mathbb{R}^*$. Then also $\lim b_n = L$.

Proof. It follows at once from Definitions 2 and 4 because the sequence (m_n) in the last definition has the property that $m_n \ge n$ for every n.

The following useful proposition holds. Later we prove part 1 of it.

Proposition 6 (on subsequences) Let (a_n) be a real sequence and let $A \in \mathbb{R}^*$. The following hold.

- 1. There is a sequence (b_n) such that $(b_n) \preceq (a_n)$ and (b_n) has a limit.
- 2. The sequence (a_n) does not have a limit $\iff (a_n)$ has two subsequences with different limits.
- 3. It is not true that $\lim a_n = A \iff$ there is a sequence (b_n) such that $(b_n) \preceq (a_n)$ and (b_n) has a limit different from A.

Therefore we can always refute that a sequence has a limit by exhibiting two subsequences of it that have different limits. For example,

$$(a_n) := ((-1)^n) = (-1, 1, -1, 1, -1, ...)$$

does not have a limit because $(1, 1, ...) \leq (a_n)$ and $(-1, -1, ...) \leq (a_n)$.

• The limit of the n-th root of n. One should be able to recognize when the computation of the given limit is "trivial" and when it is "non-trivial". The former is the case when in the expression whose limit one computes no two growths fight each other, else the latter case occurs. For instance, to compute the limits $\lim (2^n + 3^n)$ and $\lim \frac{4}{5n-3}$ is trivial, but to compute the limits $\lim (2^n - 3^n)$ and $\lim \frac{4n+7}{5n-3}$ is non-trivial. Often we compute a non-trivial limit by transforming the expression algebraically in a trivial form, like in the above example with $\sqrt[3]{n} - \sqrt{n}$. The next limit of $n^{1/n}$ is non-trivial because $n \to +\infty$ but $1/n \to 0$ and $(+\infty)^0$ is another indeterminate expression. We will see that the exponent prevails and $n^{1/n} \rightarrow 1$.

Proposition 7
$$(n^{1/n} \to 1)$$
 It holds that
$$\lim_{n \to \infty} n^{1/n} = \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Proof. Always $n^{1/n} \ge 1$. If $n^{1/n} \not\rightarrow 1$, there would be a number c > 0 and a sequence $2 \le n_1 < n_2 < \ldots$ such that for every *i* one has that $n_i^{1/n_i} > 1 + c$. By the Binomial Theorem we would have for every *i* that

$$n_i > (1+c)^{n_i} = \sum_{j=0}^{n_i} {n_i \choose j} c^j = 1 + {n_i \choose 1} c + {n_i \choose 2} c^2 + \dots + {n_i \choose n_i} c^{n_i}$$

$$\geq \frac{n_i(n_i-1)}{2} \cdot c^2$$

and so, for every i,

$$n_i > \frac{n_i(n_i - 1)}{2} \cdot c^2 \rightsquigarrow 1 + \frac{2}{c^2} > n_i$$

This is a contradiction, the sequence $n_1 < n_2 < \ldots$ cannot be upper-bounded.

• When a sequence has a limit. We present four theorems (9, 10, 13 and 15) in this spirit, the second one will not be included in the exam. It is clear that existence of the limit of a sequence and its value are not influenced by changing only finitely many terms in the sequence. Thus properties ensuring existence of limits should be also *robust* in this sense, they should be independent of changes of finitely many terms in the sequences, which we define later, is a robust property. The following theorem on monotone sequences is often stated only for sequences

 (a_n) monotone for every n, which is not a robust property. In the mentioned four theorems we employ robust properties.

• Monotone (or monotonous) sequences.

Definition 8 (monotonicity) A sequence (a_n) is

• non-decreasing if $a_n \leq a_{n+1}$ for every n,

- non-decreasing from n_0 if $a_n \leq a_{n+1}$ for every $n \geq n_0$,
- non-increasing if $a_n \ge a_{n+1}$ for every n,
- non-increasing from n_0 if $a_n \ge a_{n+1}$ for every $n \ge n_0$,
- monotonous if it is non-decreasing or non-increasing,
- monotonous from n_0 if it is non-decreasing from n_0 or non-increasing from n_0 .

The inequalities $a_n < a_{n+1}$, respectively $a_n > a_{n+1}$, yield a (strictly) increasing, respectively a (strictly) decreasing, sequence.

A sequence (a_n) is bounded from above (BFA) if $\exists c \forall n : a_n < c$, else (a_n) is unbounded from above (UFA). Taking the reverse inequality we get boundedness, resp. unboundedness, of (a_n) from below (BFB and UFB). The sequence is bounded, if it is bounded both from above and from below. Each of these five properties of sequences is robust.

Theorem 9 (on monotone sequences) Any real sequence (a_n) that is monotone from n_0 has a limit. If (a_n) is non-decreasing from n_0 then

$$\lim_{n \to \infty} a_n = \begin{cases} \sup(\{a_n \mid n \ge n_0\}) \dots & (a_n) \text{ is BFA and} \\ +\infty & \dots & (a_n) \text{ is UFA.} \end{cases}$$

If (a_n) is non-increasing from n_0 then
$$\lim_{n \to \infty} a_n = \begin{cases} \inf(\{a_n \mid n \ge n_0\}) \dots & (a_n) \text{ is BFB and} \\ -\infty & \dots & (a_n) \text{ is UFB.} \end{cases}$$

Proof. We consider only the first case of a sequence that is nondecreasing from n_0 , the other case is similar. If (a_n) is unbounded from above then for any given c there exists an m such that $a_m > \max(c, a_1, a_2, \ldots, a_{n_0})$. Thus $a_m > c$ and $m > n_0$. Therefore for every $n \ge m$,

$$a_n \ge a_{n-1} \ge \dots \ge a_m > c \rightsquigarrow a_n > c$$

and $a_n \to +\infty$.

For (a_n) bounded from above we set $s := \sup(\{a_n \mid n \ge n_0\})$. Suppose that an $\varepsilon > 0$ is given. By the definition of supremum there exists an $m \ge n_0$ such that $s - \varepsilon < a_m \le s$. Thus for every $n \ge m$,

$$s - \varepsilon < a_m \le \dots \le a_{n-1} \le a_n \le s \rightsquigarrow s - \varepsilon < a_n \le s$$

and $a_n \to s$.

• Quasi-monotonous sequences (not included in the exam). We say that a sequence (a_n) is quasi-monotone from n_0 if

$$n \ge n_0 \Rightarrow$$
 every set $\{m \mid a_m < a_n\}$ is finite

or

 $n \ge n_0 \Rightarrow$ every set $\{m \mid a_m > a_n\}$ is finite.

Clearly, any sequence monotonous from an n_0 is quasi-monotonous from the same n_0 . It is not hard to devise a sequence that is not monotonous from n_0 for any n_0 , but is quasi-monotonous from some n_0 .

In the next theorem we use the quantities \limsup and \limsup and \limsup inf of a sequence. They are always defined, may attain values $\pm \infty$ and will be introduced in the next lecture.

Theorem 10 (on quasi-mon. sequences) Every sequence $(a_n) \subset \mathbb{R}$ that is quasi-monotonous from n_0 has a limit. If (a_n) satisfies the 1st, resp. the 2nd, condition in the definition, then

 $\lim a_n = \limsup a_n \in \mathbb{R}^*, \ resp. \ \lim a_n = \liminf a_n \in \mathbb{R}^* \ .$

Proof. We consider only the case that (a_n) satisfies the 1st condition for some n_0 , the other case is similar. We suppose that (a_n) is unbounded from above and that a c is given. Hence there is an $m \ge n_0$ such that $a_m > c$. By the 1st condition there exist a k such that $a_n \ge a_m > c$ for every $n \ge k$. Thus $a_n \to +\infty = \limsup a_n$. Suppose that (a_n) is bounded from above, that $s := \limsup a_n \in \mathbb{R}$ and that an ε is given. By the definition of $\limsup a_n$, in

$$s - \varepsilon < a_m < s + \varepsilon$$

the first inequality holds for infinitely many m and the second one for almost all m. By the 1st condition there exists a k such that $s - \varepsilon < a_n < s + \varepsilon$ holds for every $n \ge k$. Thus $a_n \to s$. \Box Quasi-monotonous sequences, in which $n_0 = 1$, were introduced by the English mathematician Godfrey H. Hardy (1877–1947).

• *The Bolzano–Weierstrass theorem.* For its proof we need the next result that is of independent interest.

Proposition 11 (existence of mon. subsequences) Any sequence of real numbers has a monotonous subsequence.

Proof. For a given (a_n) we consider the set

$$M := \{n \mid \forall m : n \le m \Rightarrow a_n \ge a_m\}.$$

If it is infinite, $M = \{m_1 < m_2 < \dots\}$, we have the non-increasing subsequence (a_{m_n}) . If M is finite, we take a number $m_1 > \max(M)$. Then certainly $m_1 \notin M$ and there is a number $m_2 > m_1$ such that $a_{m_1} < a_{m_2}$. As $m_2 \notin M$, there is an $m_3 > m_2$ such that $a_{m_2} < a_{m_3}$. And so on, we get a non-decreasing, even strictly increasing, subsequence (a_{m_n}) .

The theorem on monotone sequences and the previous proposition have the following two immediate corollaries. The first one is part 1 of Proposition 6.

Corollary 12 (subsequence with a limit) Any real sequence has a subsequence that has a limit.

Proof. Let (a_n) be a bounded sequence and $(b_n) \preceq (a_n)$ be its monotonous subsequence guaranteed by the previous proposition. It is clear that (b_n) is bounded and by Theorem 9 it has a finite limit. \Box

Karl Weierstrass (1815–1897) was a German mathematician, he was the "father of the modern mathematical analysis". The priest, philosopher and mathematician *Bernard Bolzano (1781–1848)* had Italian, German and Czech roots. In Prague there is a street named after him (near Hlavní nádraží), in the Celetná street a plaque commemorates him and his grave is in Olšanské hřbitovy (cemetery).

• The Cauchy condition.

Definition 14 (Cauchy sequences) A sequence $(a_n) \subset \mathbb{R}$ is Cauchy if

$$\forall \varepsilon \exists n_0: m, n \ge n_0 \Rightarrow |a_m - a_n| < \varepsilon ,$$

i.e., $a_m \in U(a_n, \varepsilon)$.

The property that a sequence of real numbers is Cauchy is a robust one. It is clear that every Cauchy sequence is bounded.

Theorem 15 (Cauchy condition) A sequence $(a_n) \subset \mathbb{R}$ converges if and only if (a_n) is Cauchy.

Proof. The implication \Rightarrow . Let $\lim a_n = a$ and let $a_n \in b$ given. Then there is an n_0 such that $n \ge n_0 \Rightarrow |a_n - a| < \varepsilon/2$. Thus

$$m, n \ge n_0 \Rightarrow |a_m - a_n| \le |a_m - a| + |a - a_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

and (a_n) is a Cauchy sequence. (We have used that $a_m - a_n =$ $(a_m-a)+(a-a_n)$ and that the triangle inequality $|c+d| \leq |c|+|d|$ holds.)

The implication \Leftarrow . Let (a_n) be a Cauchy sequence. We know that (a_n) is bounded, and therefore by the Bolzano-Weierstrass theorem it has a convergent subsequence (a_{m_n}) with a limit a. For a given ε we have an n_0 such that $n \ge n_0 \Rightarrow |a_{m_n} - a| < \varepsilon/2$ and that $m, n \ge n_0 \Rightarrow |a_m - a_n| < \varepsilon/2$. Always $m_n \ge n$ and therefore

$$n \ge n_0 \Rightarrow |a_n - a| \le |a_n - a_{m_n}| + |a_{m_n} - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon .$$

Thus $a_n \Rightarrow a_n$

Thus $a_n \to a$.

Also the French mathematician Augustin-Louis Cauchy (1789– 1857) lived in Prague, in political exile in 1833–1838.

THANK YOU FOR YOUR ATTENTION