LECTURE 2, 2/23/2022

EXISTENCE THEOREMS FOR LIMITS OF SEQUENCES

- Review. Recall the real numbers \mathbb{R} and recall the natural numbers $\mathbb{N}=\{1,2, \ldots\}$. We denote the latter by the letters i, j, k, l, $m, m_{0}, m_{1}, \ldots, n, n_{0}, n_{1}, \ldots$ The letters $a, b, c, d, e, \delta, \varepsilon$ and θ, possibly with indices, denote real numbers. Always $\delta, \varepsilon, \theta>0$ and we think of them as close to 0 . Recall that $\left(a_{n}\right) \subset \mathbb{R}$ is a real sequence.
- Computing with infinities. For the general notion of a limit we add to \mathbb{R} the infinities $+\infty$ and $-\infty$. We get the extended real axis

$$
\mathbb{R}^{*}:=\mathbb{R} \cup\{+\infty,-\infty\}
$$

We compute with infinities according to the following rules.
We always take only all upper or all lower signs:

$$
\begin{aligned}
& A \in \mathbb{R} \cup\{ \pm \infty\} \Rightarrow A+(\pm \infty)= \pm \infty+A:= \pm \infty, \\
& A \in(0,+\infty) \cup\{+\infty\} \Rightarrow A \cdot(\pm \infty)=(\pm \infty) \cdot A:= \pm \infty, \\
& A \in(-\infty, 0) \cup\{-\infty\} \Rightarrow A \cdot(\pm \infty)=(\pm \infty) \cdot A:=\mp \infty, \\
& a \in \mathbb{R} \Rightarrow \frac{a}{ \pm \infty}:=0, \\
&-(\pm \infty):=\mp \infty,-\infty<a<+\infty \text { and }-\infty<+\infty .
\end{aligned}
$$

Subtraction of an element $A \in \mathbb{R}^{*}$ reduces to adding $-A$ and division by $a \neq 0$ means multiplication by $1 / a$. All remaining values of the operations, that is $\left(A \in \mathbb{R}^{*}\right)$

$$
\frac{A}{0},(\pm \infty)+(\mp \infty), 0 \cdot(\pm \infty),(\pm \infty) \cdot 0, \frac{ \pm \infty}{ \pm \infty} \text { and } \frac{ \pm \infty}{\mp \infty}
$$

are undefined, these are so called indeterminate expressions. Elements of \mathbb{R}^{*} are usually denoted by A, B, K and L.

- Neighborhoods of points and infinities. We remind the notation for real intervals:

$$
(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\},(-\infty, a)=\{x \in \mathbb{R} \mid x<a\}
$$

etc.
Definition 1 (neighborhoods) For any $\varepsilon>0$, the ε neighborhood of a point b and the deleted ε-neighborhood of b is defined, respectively, as

$$
U(b, \varepsilon):=(b-\varepsilon, b+\varepsilon) \text { and } P(b, \varepsilon):=(b-\varepsilon, b) \cup(b, b+\varepsilon),
$$

$$
\text { so that } P(b, \varepsilon)=U(b, \varepsilon) \backslash\{b\} \text {. An } \varepsilon \text {-neighborhood of infinity }
$$ $i s$

$U(-\infty, \varepsilon):=(-\infty,-1 / \varepsilon)$ and $U(+\infty, \varepsilon):=(1 / \varepsilon,+\infty)$.
We set $P(\pm \infty, \varepsilon):=U(\pm \infty, \varepsilon)$.
The main property of neighborhoods is that if $V, V^{\prime} \in\{U, P\}$ then

$$
A, B \in \mathbb{R}^{*}, A<B \Rightarrow \exists \varepsilon: V(A, \varepsilon)<V^{\prime}(B, \varepsilon)
$$

i.e., $a<b$ for every $a \in V(A, \varepsilon)$ and every $b \in V^{\prime}(B, \varepsilon)$. In particular, $A \neq B \Rightarrow \exists \varepsilon: V(A, \varepsilon) \cap V^{\prime}(B, \varepsilon)=\emptyset$.

- Limits of sequences. By $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right) \subset \mathbb{R}$ we denote real sequences. The next definition belongs to fundamental ones in analysis (and in mathematics).

Definition 2 (limit of a sequence) Let $\left(a_{n}\right)$ be a real sequence and $L \in \mathbb{R}^{*}$. If

$$
\forall \varepsilon \exists n_{0}: n \geq n_{0} \Rightarrow a_{n} \in U(L, \varepsilon)
$$

we write that $\lim a_{n}=L$ and say that the sequence $\left(a_{n}\right)$ has the limit L.

For $L \in \mathbb{R}$ we speak of a finite limit, and for $L= \pm \infty$ of an infinite limit. Sequences with finite limits converge, else they diverge. If $\lim a_{n}=a \in \mathbb{R}$ then for every real (and arbitrarily small) $\varepsilon>0$ there is an index $n_{0} \in \mathbb{N}$ such that for every index $n \in \mathbb{N}$ at least n_{0} the distance between a_{n} and a is smaller than ε :

$$
\left|a_{n}-a\right|<\varepsilon
$$

If $\lim a_{n}=-\infty$ then for every (negative) $c \in \mathbb{R}$ there is an index n_{0} such that for every index n at least n_{0},

$$
a_{n}<c .
$$

Similarly, with the inequality reversed, for the limit $+\infty$. We will use also the notation $\lim _{n \rightarrow \infty} a_{n}=L$ and $a_{n} \rightarrow L$. The simplest convergent sequence is the eventually constant sequence $\left(a_{n}\right)$ with $a_{n}=a$ for every $n \geq n_{0}$, then of course $\lim a_{n}=a$. The popular image of a limit that "a sequence gets closer and closer to the limit but never reaches it (possibly only in infinity)", is a poetic one but is incorrect.

> Proposition 3 (uniqueness of \lim) Limits are unique, $\lim a_{n}=K$ and $\lim a_{n}=L \Rightarrow K=L$.

Proof. Let $\lim a_{n}=K, \lim a_{n}=L$ and let an ε be given. By Definition 2 there is an n_{0} such that $n \geq n_{0} \Rightarrow a_{n} \in U(K, \varepsilon)$ and $a_{n} \in U(L, \varepsilon)$. Thus $\forall \varepsilon: U(K, \varepsilon) \cap U(L, \varepsilon) \neq \emptyset$. By the main property of neighborhoods mentioned above, $K=L$.

- Two limits. We show that $\lim \frac{1}{n}=0$. It is clear because for every ε and every $n \geq n_{0}:=1+\lceil 1 / \varepsilon\rceil$,

$$
0<\frac{1}{n} \leq \underbrace{\frac{1}{1+\lceil 1 / \varepsilon\rceil}}_{>1 / \varepsilon}<\frac{1}{1 / \varepsilon}=\varepsilon \leadsto 1 / n \in U(0, \varepsilon) .
$$

Here $\lceil a\rceil \in \mathbb{Z}$ denotes the upper integral part of the number a, the least $v \in \mathbb{Z}$ such that $v \geq a$. Similarly, the lower integral part $\lfloor a\rfloor$ of the number a is the largest $v \in \mathbb{Z}$ such that $v \leq a$. Our second example is that

$$
\sqrt[3]{n}-\sqrt{n} \rightarrow-\infty
$$

Indeed, for any given $c<0$ and every $n \geq n_{0}>\max \left(4 c^{2}, 2^{6}\right)$,

$$
\overbrace{\sqrt[3]{n}-\sqrt{n}}^{\text {non-trivial }}=\overbrace{n^{1 / 2} \cdot \underbrace{\left(n^{-1 / 6}-1\right)}_{n>2^{6} \neq \cdots<-1 / 2}}^{\text {trivial }}<\underbrace{-n^{1 / 2}}_{\cdots<-2|c|} / 2<-2|c| / 2=c .
$$

It is not necessary to find an optimum n_{0} in terms of ε or c. This is easy to do only in the simplest cases like $\lim \frac{1}{n}$, and else it may be complicated. It fully suffices to have some value n_{0} such that for every $n \geq n_{0}$ the inequality (i.e., the membership) in the definition of limit holds. But to achieve it one still needs some skill in manipulating inequalities and estimates.

- Subsequences of sequences.

Definition 4 (subsequence) A sequence $\left(b_{n}\right)$ is a subsequence of a sequence $\left(a_{n}\right)$ if there is a sequence (of natural numbers) $m_{1}<m_{2}<\ldots$ such that for every n,

$$
b_{n}=a_{m_{n}} .
$$

We will use the notation that $\left(b_{n}\right) \preceq\left(a_{n}\right)$.
It is clear that the relation \preceq on the set of sequences is reflexive and transitive. It is easy to find sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that $\left(a_{n}\right) \preceq\left(b_{n}\right)$ and $\left(b_{n}\right) \preceq\left(a_{n}\right)$ but $\left(a_{n}\right) \neq\left(b_{n}\right)$.

> Proposition $5\left(\preceq\right.$ preserves limits) Let $\left(b_{n}\right) \preceq\left(a_{n}\right)$ and let $\lim a_{n}=L \in \mathbb{R}^{*}$. Then also $\lim b_{n}=L$.

Proof. It follows at once from Definitions 2 and 4 because the sequence (m_{n}) in the last definition has the property that $m_{n} \geq n$ for every n.

The following useful proposition holds. Later we prove part 1 of it.

Proposition 6 (on subsequences) Let $\left(a_{n}\right)$ be a real sequence and let $A \in \mathbb{R}^{*}$. The following hold.

1. There is a sequence $\left(b_{n}\right)$ such that $\left(b_{n}\right) \preceq\left(a_{n}\right)$ and $\left(b_{n}\right)$ has a limit.
2. The sequence $\left(a_{n}\right)$ does not have a limit $\Longleftrightarrow\left(a_{n}\right)$ has two subsequences with different limits.
3. It is not true that $\lim a_{n}=A \Longleftrightarrow$ there is a sequence $\left(b_{n}\right)$ such that $\left(b_{n}\right) \preceq\left(a_{n}\right)$ and $\left(b_{n}\right)$ has a limit different from A.

Therefore we can always refute that a sequence has a limit by exhibiting two subsequences of it that have different limits. For example,

$$
\left(a_{n}\right):=\left((-1)^{n}\right)=(-1,1,-1,1,-1, \ldots)
$$

does not have a limit because $(1,1, \ldots) \preceq\left(a_{n}\right)$ and $(-1,-1, \ldots) \preceq$ $\left(a_{n}\right)$.

- The limit of the n-th root of n. One should be able to recognize when the computation of the given limit is "trivial" and when it is "non-trivial". The former is the case when in the expression whose limit one computes no two growths fight each other, else the latter case occurs. For instance, to compute the limits $\lim \left(2^{n}+3^{n}\right)$ and $\lim \frac{4}{5 n-3}$ is trivial, but to compute the limits $\lim \left(2^{n}-3^{n}\right)$ and $\lim \frac{4 n+7}{5 n-3}$ is non-trivial. Often we compute a non-trivial limit by transforming the expression algebraically in a trivial form, like in the above example with $\sqrt[3]{n}-\sqrt{n}$. The next limit of $n^{1 / n}$ is non-trivial because $n \rightarrow+\infty$ but $1 / n \rightarrow 0$ and $(+\infty)^{0}$ is another
indeterminate expression. We will see that the exponent prevails and $n^{1 / n} \rightarrow 1$.

Proposition $7\left(n^{1 / n} \rightarrow 1\right)$ It holds that

$$
\lim _{n \rightarrow \infty} n^{1 / n}=\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

Proof. Always $n^{1 / n} \geq 1$. If $n^{1 / n} \nrightarrow 1$, there would be a number $c>0$ and a sequence $2 \leq n_{1}<n_{2}<\ldots$ such that for every i one has that $n_{i}^{1 / n_{i}}>1+c$. By the Binomial Theorem we would have for every i that

$$
\begin{aligned}
n_{i} & >(1+c)^{n_{i}}=\sum_{j=0}^{n_{i}}\binom{n_{i}}{j} c^{j}=1+\binom{n_{i}}{1} c+\binom{n_{i}}{2} c^{2}+\cdots+\binom{n_{i}}{n_{i}} c^{n_{i}} \\
& \geq \frac{n_{i}\left(n_{i}-1\right)}{2} \cdot c^{2}
\end{aligned}
$$

and so, for every i,

$$
n_{i}>\frac{n_{i}\left(n_{i}-1\right)}{2} \cdot c^{2} \leadsto 1+\frac{2}{c^{2}}>n_{i}
$$

This is a contradiction, the sequence $n_{1}<n_{2}<\ldots$ cannot be upper-bounded.

- When a sequence has a limit. We present four theorems (9, 10, 13 and 15) in this spirit, the second one will not be included in the exam. It is clear that existence of the limit of a sequence and its value are not influenced by changing only finitely many terms in the sequence. Thus properties ensuring existence of limits should be also robust in this sense, they should be independent of changes of finitely many terms in the sequence. For instance boundedness of sequences, which we define later, is a robust property. The following theorem on monotone sequences is often stated only for sequences
$\left(a_{n}\right)$ monotone for every n, which is not a robust property. In the mentioned four theorems we employ robust properties.
- Monotone (or monotonous) sequences.

Definition 8 (monotonicity) A sequence $\left(a_{n}\right)$ is

- non-decreasing if $a_{n} \leq a_{n+1}$ for every n,
- non-decreasing from n_{0} if $a_{n} \leq a_{n+1}$ for every $n \geq n_{0}$,
- non-increasing if $a_{n} \geq a_{n+1}$ for every n,
- non-increasing from n_{0} if $a_{n} \geq a_{n+1}$ for every $n \geq n_{0}$,
- monotonous if it is non-decreasing or non-increasing,
- monotonous from n_{0} if it is non-decreasing from n_{0} or non-increasing from n_{0}.

The inequalities $a_{n}<a_{n+1}$, respectively $a_{n}>a_{n+1}$, yield a (strictly) increasing, respectively a (strictly) decreasing, sequence.

A sequence $\left(a_{n}\right)$ is bounded from above (BFA) if $\exists c \forall n: a_{n}<$ c, else $\left(a_{n}\right)$ is unbounded from above (UFA). Taking the reverse inequality we get boundedness, resp. unboundedness, of $\left(a_{n}\right)$ from below (BFB and UFB). The sequence is bounded, if it is bounded both from above and from below. Each of these five properties of sequences is robust.

Theorem 9 (on monotone sequences) Any real sequence (a_{n}) that is monotone from n_{0} has a limit. If (a_{n}) is non-decreasing from n_{0} then

$$
\lim _{n \rightarrow \infty} a_{n}=\left\{\begin{array}{lll}
\sup \left(\left\{a_{n} \mid n \geq n_{0}\right\}\right) & \ldots & \left(a_{n}\right) \text { is BFA and } \\
+\infty & \ldots & \left(a_{n}\right) \text { is UFA }
\end{array}\right.
$$

If $\left(a_{n}\right)$ is non-increasing from n_{0} then

$$
\lim _{n \rightarrow \infty} a_{n}=\left\{\begin{array}{lll}
\inf \left(\left\{a_{n} \mid n \geq n_{0}\right\}\right) & \ldots & \left(a_{n}\right) \text { is } \mathrm{BFB} \text { and } \\
-\infty & \ldots & \left(a_{n}\right) \text { is UFB }
\end{array}\right.
$$

Proof. We consider only the first case of a sequence that is nondecreasing from n_{0}, the other case is similar. If $\left(a_{n}\right)$ is unbounded from above then for any given c there exists an m such that $a_{m}>$ $\max \left(c, a_{1}, a_{2}, \ldots, a_{n_{0}}\right)$. Thus $a_{m}>c$ and $m>n_{0}$. Therefore for every $n \geq m$,

$$
a_{n} \geq a_{n-1} \geq \cdots \geq a_{m}>c \leadsto a_{n}>c
$$

and $a_{n} \rightarrow+\infty$.
For $\left(a_{n}\right)$ bounded from above we set $s:=\sup \left(\left\{a_{n} \mid n \geq n_{0}\right\}\right)$. Suppose that an $\varepsilon>0$ is given. By the definition of supremum there exists an $m \geq n_{0}$ such that $s-\varepsilon<a_{m} \leq s$. Thus for every $n \geq m$,

$$
s-\varepsilon<a_{m} \leq \cdots \leq a_{n-1} \leq a_{n} \leq s \leadsto s-\varepsilon<a_{n} \leq s
$$

and $a_{n} \rightarrow s$.

- Quasi-monotonous sequences (not included in the exam). We say that a sequence $\left(a_{n}\right)$ is quasi-monotone from n_{0} if

$$
n \geq n_{0} \Rightarrow \text { every set }\left\{m \mid a_{m}<a_{n}\right\} \text { is finite }
$$

or

$$
n \geq n_{0} \Rightarrow \text { every set }\left\{m \mid a_{m}>a_{n}\right\} \text { is finite }
$$

Clearly, any sequence monotonous from an n_{0} is quasi-monotonous from the same n_{0}. It is not hard to devise a sequence that is not monotonous from n_{0} for any n_{0}, but is quasi-monotonous from some n_{0}.

In the next theorem we use the quantities limsup and lim inf of a sequence. They are always defined, may attain values $\pm \infty$ and will be introduced in the next lecture.

> Theorem 10 (on quasi-mon. sequences) Every sequence $\left(a_{n}\right) \subset \mathbb{R}$ that is quasi-monotonous from n_{0} has a limit. If $\left(a_{n}\right)$ satisfies the 1st, resp. the 2nd, condition in the definition, then
> $\lim a_{n}=\limsup a_{n} \in \mathbb{R}^{*}$, resp. $\lim a_{n}=\lim \inf a_{n} \in \mathbb{R}^{*}$.

Proof. We consider only the case that $\left(a_{n}\right)$ satisfies the 1 st condition for some n_{0}, the other case is similar. We suppose that $\left(a_{n}\right)$ is unbounded from above and that a c is given. Hence there is an $m \geq n_{0}$ such that $a_{m}>c$. By the 1 st condition there exist a k such that $a_{n} \geq a_{m}>c$ for every $n \geq k$. Thus $a_{n} \rightarrow+\infty=\limsup a_{n}$. Suppose that $\left(a_{n}\right)$ is bounded from above, that $s:=\limsup a_{n} \in \mathbb{R}$ and that an ε is given. By the definition of $\limsup a_{n}$, in

$$
s-\varepsilon<a_{m}<s+\varepsilon
$$

the first inequality holds for infinitely many m and the second one for almost all m. By the 1st condition there exists a k such that $s-\varepsilon<a_{n}<s+\varepsilon$ holds for every $n \geq k$. Thus $a_{n} \rightarrow s$.

Quasi-monotonous sequences, in which $n_{0}=1$, were introduced by the English mathematician Godfrey H. Hardy (1877-1947).

- The Bolzano-Weierstrass theorem. For its proof we need the next result that is of independent interest.

Proposition 11 (existence of mon. subsequences) Any sequence of real numbers has a monotonous subsequence.

Proof. For a given $\left(a_{n}\right)$ we consider the set

$$
M:=\left\{n \mid \forall m: n \leq m \Rightarrow a_{n} \geq a_{m}\right\} .
$$

If it is infinite, $M=\left\{m_{1}<m_{2}<\ldots\right\}$, we have the non-increasing subsequence $\left(a_{m_{n}}\right)$. If M is finite, we take a number $m_{1}>\max (M)$. Then certainly $m_{1} \notin M$ and there is a number $m_{2}>m_{1}$ such that $a_{m_{1}}<a_{m_{2}}$. As $m_{2} \notin M$, there is an $m_{3}>m_{2}$ such that $a_{m_{2}}<a_{m_{3}}$. And so on, we get a non-decreasing, even strictly increasing, subsequence ($a_{m_{n}}$).

The theorem on monotone sequences and the previous proposition have the following two immediate corollaries. The first one is part 1 of Proposition 6.

Corollary 12 (subsequence with a limit) Any real sequence has a subsequence that has a limit.

> Theorem 13 (Bolzano-Weierstrass) Any bounded sequence of real numbers has a convergent subsequence.

Proof. Let $\left(a_{n}\right)$ be a bounded sequence and $\left(b_{n}\right) \preceq\left(a_{n}\right)$ be its monotonous subsequence guaranteed by the previous proposition. It is clear that $\left(b_{n}\right)$ is bounded and by Theorem 9 it has a finite limit.

Karl Weierstrass (1815-1897) was a German mathematician, he was the "father of the modern mathematical analysis". The priest, philosopher and mathematician Bernard Bolzano (1781-1848) had Italian, German and Czech roots. In Prague there is a street named after him (near Hlavní nádraží), in the Celetná street a plaque commemorates him and his grave is in Olšanské hřbitovy (cemetery).

- The Cauchy condition.

Definition 14 (Cauchy sequences) A sequence $\left(a_{n}\right) \subset$ \mathbb{R} is Cauchy if

$$
\begin{aligned}
& \quad \forall \varepsilon \exists n_{0}: m, n \geq n_{0} \Rightarrow\left|a_{m}-a_{n}\right|<\varepsilon \text {, } \\
& \text { i.e., } a_{m} \in U\left(a_{n}, \varepsilon\right) \text {. }
\end{aligned}
$$

The property that a sequence of real numbers is Cauchy is a robust one. It is clear that every Cauchy sequence is bounded.

Theorem 15 (Cauchy condition) A sequence $\left(a_{n}\right) \subset \mathbb{R}$ converges if and only if $\left(a_{n}\right)$ is Cauchy.

Proof. The implication \Rightarrow. Let $\lim a_{n}=a$ and let an ε be given. Then there is an n_{0} such that $n \geq n_{0} \Rightarrow\left|a_{n}-a\right|<\varepsilon / 2$. Thus $m, n \geq n_{0} \Rightarrow\left|a_{m}-a_{n}\right| \leq\left|a_{m}-a\right|+\left|a-a_{n}\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$
and $\left(a_{n}\right)$ is a Cauchy sequence. (We have used that $a_{m}-a_{n}=$ $\left(a_{m}-a\right)+\left(a-a_{n}\right)$ and that the triangle inequality $|c+d| \leq|c|+|d|$ holds.)

The implication \Leftarrow. Let (a_{n}) be a Cauchy sequence. We know that $\left(a_{n}\right)$ is bounded, and therefore by the Bolzano-Weierstrass theorem it has a convergent subsequence $\left(a_{m_{n}}\right)$ with a limit a. For a given ε we have an n_{0} such that $n \geq n_{0} \Rightarrow\left|a_{m_{n}}-a\right|<\varepsilon / 2$ and that $m, n \geq n_{0} \Rightarrow\left|a_{m}-a_{n}\right|<\varepsilon / 2$. Always $m_{n} \geq n$ and therefore

$$
n \geq n_{0} \Rightarrow\left|a_{n}-a\right| \leq\left|a_{n}-a_{m_{n}}\right|+\left|a_{m_{n}}-a\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon .
$$

Thus $a_{n} \rightarrow a$.
Also the French mathematician Augustin-Louis Cauchy (17891857) lived in Prague, in political exile in 1833-1838.

THANK YOU FOR YOUR ATTENTION

