
LECTURE 11, 4/27/2022

MORE ON THE NEWTON INTEGRAL. COMPUTING

PRIMITIVES OF RATIONAL FUNCTIONS

• The general Newton integral. We extend (N)
∫ b
a f to functions

defined on any nonempty open interval (A,B) with A < B in

R∗. These are exactly the intervals (−∞, a), (a, b), (a,+∞) and

(−∞,+∞) = R with any real numbers a < b.

Definition 1 (general Newton integral) Let A < B be

in R∗ and F, f : (A,B) → R be functions such that F is

a primitive of f . We define the Newton integral of f over

the interval (A,B) as the difference

(N)

∫ B

A

f = F (B)− F (A) := lim
x→B

F (x)− lim
x→A

F (x) ,

if the last two limits exist and are finite. Then we define

the area Af of the domain Df under Gf as

Af := (N)

∫ B

A

f .

Like for the earlier Newton integral over (a, b), the value of the

present integral does not depend on the choice of F because any

two primitives of f differ by a constant shift. If (N)
∫ B
A f is defined

we say that f is Newton-integrable over (A,B) and write that

f ∈ N(A, B) .

It is not hard to see that if (A0, B0) ⊂ (A,B) are nonempty open

intervals then f ∈ N(A,B) ⇒ f | (A0, B0)) ∈ N(A0, B0). We will
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omit restriction symbol in situations like this and write just that

f ∈ N(A0, B0). For instance, 1
1+x2
∈ N(0,+∞) as

(N)

∫ +∞

0

1

1 + x2
=

limx→+∞ arctanx︷ ︸︸ ︷
arctan(+∞) − arctan(0) = π/2− 0 = π/2 .

For F : (A,B)→ R we introduce the notation

[F ]BA := lim
x→B

F (x)− lim
x→A

F (x) ,

if both limits exist and are finite.

• Generalizing the general Newton integral. We extend (N)
∫ B
A f

a little more by allowing B ≤ A. We set (N)
∫ A
A f := 0 for any

function f and have that

(N)

∫ A

B

f = − (N)

∫ B

A

f

if f ∈ N(A,B). We will not prove the next two propositions, the

proofs are easy.

Proposition 2 (additivity of integral) If A,B,C ∈ R∗
and f ∈ N(min(A,B,C),max(A,B,C)) then

(N)

∫ C

A

f = (N)

∫ B

A

f + (N)

∫ C

B

f ,

that is,

(N)

∫ B

A

f + (N)

∫ C

B

f + (N)

∫ A

C

f = 0 .
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Proposition 3 (linearity of integral) If A and B are

in R∗, a, b ∈ R and f, g ∈ N(A,B) then

(N)

∫ B

A

(af + bg) = a · (N)

∫ B

A

f + b · (N)

∫ B

A

g .

• Integration by parts. But we prove the integration by parts

formula for the general Newton integral.

Theorem 4 ((N)
∫ B
A by parts) Consider four functions

f, g, F,G : (A,B) → R, where A < B are in R∗, such that

F , resp. G, is a primitive of f , resp. g. Then the equality

(N)

∫ B

A

fG︸ ︷︷ ︸
T1

= [FG]BA︸ ︷︷ ︸
T2

− (N)

∫ B

A

Fg︸ ︷︷ ︸
T3

holds whenever two of the three terms Ti are defined.

Proof. 1. Suppose that the first two terms T1, T2 ∈ R are defined.

So fG has on (A,B) a primitive H with [H ]BA = T1 and [FG]BA =

T2. Then

(FG−H)′ = fG+Fg− fG = Fg and [FG−H ]BA = T2− T1 .

Thus FG−H is on (A,B) a primitive of Fg and the last equality

is a rearrangement of the equality stated in the theorem.

2. Suppose that the first and third term T1 ∈ R and T3 ∈ R are

defined. So fG, resp. Fg, has on (A,B) a primitive H1, resp. H2,

with [H1]
B
A = T1 and [H2]

B
A = T3. Then

(H1 + H2)
′ = fG + Fg = (FG)′ on (A,B) .
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By an earlier result (Theorem 9 in Lecture 9) there is a constant c

such that H1 + H2 + c = FG on (A,B). Hence

[FG]BA = [H1 + H2 + c]BA = [H1]
B
A + [H2]

B
A = T1 + T3

which is a rearrangement of the equality stated in the theorem.

3. The case when T2, T3 ∈ R are defined is similar to Case 1 and

is left to the reader as an exercise. 2

For example, we set In := (N)
∫ +∞
0 xne−x, n ∈ N0. Then I0 =

[−e−x]+∞0 = −e−∞ − (−e−0) = −0− (−1) = 1. For n > 0 we get

by the last theorem and induction on n that

In = (N)

∫ +∞

0

xn
(
−e−x

)′
Thm. 4, ∃ T2 and T3= [−xne−x]+∞0 + (N)

∫ +∞

0

(xn)′ e−x

= −0 + 0 + n · (N)

∫ +∞

0

xn−1e−x

= n · In−1 .

Therefore In = n! =
∏n

j=1 j for every n ∈ N0. This representation

of factorials by integrals can be used to prove the Stirling formula

that we mentioned last time.

• Integration by substitution. We adapt the two formulae for

integration by substitution given in the last lecture for the general

Newton integral.
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Theorem 5 ((N)
∫ B
A f by substitution) If A < B and

C < D are in R∗, g : (A,B)→ (C,D), f : (C,D)→ R and

g has on (A,B) finite g′, then the following two claims are

true.

1. Suppose that f has on (C,D) a primitive function F .

Then the equality

(N)

∫ B

A

f (g) · g′ = (N)

∫ g(B)

g(A)

f

holds if the right-hand side is defined.

2. If g is onto and g′ 6= 0 on (A,B) then the equality

(N)

∫ D

C

f = (N)

∫ g−1(D)

g−1(C)
f (g) · g′

holds if the right-hand side is defined. Here we have

that {g−1(C), g−1(D)} = {A, B} (in some order).

Proof. 1. Let A, B, C, D, g, f and F be as stated and let the

right-hand side be defined. This means that the limits

g(A) := lim
x→A

g(x) ∈ R∗ and g(B) := lim
x→B

g(x) ∈ R∗

exist. It follows that g(A) and g(B) are limit points of (C,D). It

also means that the right-hand side has the value

lim
y→g(B)

F (y)− lim
y→g(A)

F (y)

(in particular, the last two limits exist and are finite). We already
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know that F (g) is on (A,B) a primitive of f (g) · g′. Thus

(N)

∫ g(B)

g(A)

f = lim
y→g(B)

F (y)− lim
y→g(A)

F (y)

= lim
x→B

F (g(x))− lim
x→A

F (g(x))

= (N)

∫ B

A

f (g) · g′ .

Here the first and third equality follow from the definition of the

general Newton integral. The crucial middle equality follows by the

theorem on limits of composite functions (Theorem 14 in Lecture 5

whose Condition 1 holds as the outer function F is continuous).

2. Let A, B, C, D, g and f be as stated and let the right-hand

side be defined. From the proof of part 2 of Theorem 13 in the

last lecture we know that g is an increasing or decreasing bijection,

and therefore so is the inverse g−1 : (C,D)→ (A,B) (which is also

continuous). Thus the limits

g−1(C) := lim
y→C

g−1(y) ∈ R∗ and g−1(D) := lim
y→D

g−1(y) ∈ R∗

exist and are equal {A,B} (in some order). Since the right-hand

side is defined, f (g) · g′ has on (A,B) a primitive function G and

the right-hand side has the value

lim
x→g−1(D)

G(x)− lim
x→g−1(C)

G(x) .
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We already know that G(g−1) is on (C,D) a primitive of f . Thus

(N)

∫ g−1(D)

g−1(C)
f (g) · g′ = lim

x→g−1(D)
G(x)− lim

x→g−1(C)
G(x)

= lim
y→D

G(g−1(y))− lim
y→C

G(g−1(y))

= (N)

∫ D

C

f .

The first and third equality again follow from the definition of the

general Newton integral and the second equality again follows in

the same way by the theorem on limits of composite functions. 2

The two previous formulae show how the general Newton integral

relates to the operation of composition of functions. We compute

a (N)
∫ B
A f by the substitution formulae and integration by parts

and by the next table of primitives. We compute the (N)
∫ B
A f in

two steps. First a PF F of f on (A,B) is found by the mentioned

methods. Then, if F exists, it is usually straightforward to de-

termine the limits of F at A and B. For example, last time we

computed that∫ √
1− t2 =

t
√

1− t2 + arcsin t

2
=: F (t) on (−1, 1) .

(By Proposition 6 in Lecture 8, F ′(−1) = F ′(1) = 0, and therefore

this relation holds even on [−1, 1].) Thus

(N)

∫ 1

−1

√
1− t2 = lim

t→1
F (t)− lim

t→−1
F (t)

= (arcsin 1)/2− (arcsin(−1))/2

= π/4− (−π/4) = π/2 .
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So for f (t) =
√

1− t2 : [−1, 1]→ R the area of Df is (defined as)

Af = π/2. This agrees with the double area π of the unit disc

{(x, y) ∈ R2 | x2 + y2 ≤ 1} because Df is its the upper half.

• A table of antiderivatives of some elementary functions. This

table is obtained completely mechanically by inverting the rules for

differentiation in the table of derivatives in Theorem 17 in Lecture 7.

Theorem 6 (a table of primitives) The following for-

mulas hold.

1. On R,
∫

exp(x) = exp(x),
∫

sinx = − cosx,
∫

cosx =

sinx,
∫

1/(1 + x2) = arctanx (and also = −arccotx)

and
∫
xn = xn+1/(n + 1) for every n ∈ N0.

2. Both on (−∞, 0) and on (0,+∞),
∫

1/x = log(|x|) and∫
xn = xn+1/(n + 1) for every n ∈ {−2,−3, . . . }.

3. On (0,+∞),
∫
xb = xb+1/(b + 1) for every b ∈ R \ Z.

4. On every interval (kπ − π/2, kπ + π/2) with k ∈ Z,∫
1/(cosx)2 = tanx.

5. On every interval (kπ, (k + 1)π) with k ∈ Z, one has

that
∫

1/(sinx)2 = − cotx.

6. On (−1, 1),
∫

1/
√

1− x2 = arcsinx (and also =

− arccosx).

In connection with the first formula in 2 note that, formally and

interestingly, both (log x)′ = 1/x and (log(−x))′ = (1/(−x)) ·
(−x)′ = 1/x. This seemingly contradicts the basic result that

primitives of the same function only differ by a constant shift. Res-
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olution of this conundrum is simple, the functions log x and log(−x)

have disjoint definition domains.

• Computing primitives of rational functions. This is a large

class of functions for which antiderivatives can be explicitly com-

puted. Recall that a rational function r = r(x) is a ratio of two

polynomials:

r(x) =
p(x)

q(x)
: R \ Z(r)︸ ︷︷ ︸

Def(r)

→ R .

Here p(x), q(x) ∈ R[x] are polynomials with real coefficients, q(x)

is not the zero polynomial and Z(r) = {a ∈ R | q(a) = 0} is

the zero set (the set of real roots) of the denominator q(x). It is

well known that the cardinality |Z(r)| ≤ deg q, the degree of the

polynomial q = q(x). An irreducible trinomial a(x) is any real

monic (= with the leading coefficient 1) quadratic polynomial

a(x) := x2 + bx + c

such that b2 − 4c < 0, i.e., a(x) has no real root. Note that then

a(x) > 0 for every x ∈ R. For example, x2+2x+2 is an irreducible

trinomial. In the rest of the lecture we prove, modulo the proof

of Theorem 8 (the Fundamental Theorem of Algebra), the next

theorem.
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Theorem 7 (
∫
r(x)) For any rational function r = r(x)

there exists a function R(x) of the form

R(x) = r0(x) +

k∑
i=1

si · log(|x− αi|) +

l∑
i=1

ti · log(ai(x)) +

+

m∑
i=1

ui · arctan(bi(x)) ,

where r0(x) is a rational function, k, l,m ∈ N0, empty sums

are defined as 0, si, ti, ui ∈ R, αi ∈ Z(r), the ai(x) are

irreducible trinomials and the bi(x) are real non-constant

linear polynomials, and such that

R(x) =

∫
r(x)

on any nontrivial interval I ⊂ Def(r).

It is clear that functions of all four types given above can appear in

R(x). For example, we get by linearity of integration, by integration

by substitution and by the above table of primitives that

∫
r(x) :=

∫ (
1

x4
+

1

x− 1
+

=(... )′/(... )︷ ︸︸ ︷
2x + 2

x2 + 2x + 2
+

=1/((x+1)2+1)︷ ︸︸ ︷
1

x2 + 2x + 2

)
= − 1

3x3
+ log(|x− 1|) + log(x2 + 2x + 2) + arctan(x + 1) ,

on any nontrivial interval I ⊂ R \ {0, 1}. In the proof of the the-

orem we describe an algorithm for obtaining primitives of rational

functions in the stated form. But before we can start computing
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PFs we need to develop the theory of partial fractions.

• Partial fractions. We will not prove the next theorem here.

Theorem 8 (FTAlg) Every non-constant complex poly-

nomial p(x) ∈ C[x] has at least one root, a number α ∈ C
such that p(α) = 0.

From FTAlg we get irreducible decompositions in R[x].

Corollary 9 (decompositions of real polynomials)

Every nonzero real polynomial q(x) can be written as

q(x) = c ·
k∏
i=1

(x− αi)mi︸ ︷︷ ︸
type 1 r. factors

·
l∏
i=1

ai(x)ni︸ ︷︷ ︸
type 2 r. factors

where c ∈ R\{0} is its leading coefficient, k, l ∈ N0, empty

products are defined as 1, mi, ni ∈ N, the αi ∈ R are the

all distinct real roots of q(x), and the ai(x) are distinct

irreducible trinomials.

Proof. If α = a + bi ∈ C is a root of q(x) then also its conju-

gate α = a − bi is a root because q(x) ∈ R[x]. In more details,

the conjugation respects addition and multiplication and fixes real

numbers: if t ∈ R and u, v ∈ C then t = t, u + v = u + v and

u · v = u · v. So if q(x) =
∑n

j=0 tjx
j then

0 = q(α) =
∑n

j=0 tjα
j =

∑n
j=0 tj · (α)j =

∑n
j=0 tj · (α)j = q(α) .

Also, if α ∈ C \ R, i.e., if b 6= 0 then

aα(x) := (x− α)(x− α) = x2 − 2a · x + (a2 + b2) ∈ R[x]
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and is an irreducible trinomial: (2a)2 − 4(a2 + b2) = −4b2 < 0.

If q(x) is a constant polynomial, the corollary holds with the

decomposition q(x) = c. If q(x) is non-constant, by Theorem 8 it

has a root α ∈ C. We divide q(x) by x − α with remainder and

get that q(x) = (x − α) · q1(x) + β for q1(x) ∈ C[x] and β ∈ C.

Setting x = α we see that β = 0 and

q(x) = (x− α)q1(x) .

If α ∈ R, the division algorithm for polynomials shows that the

polynomial q1(x) is real. So we have split off one root factor x− α
of type 1. If α ∈ C \ R, we divide q1(x) by x− α with remainder

and get that q1(x) = (x− α)s1(x). Then

q(x) = (x− α)q1(x) = (x− α)(x− α)s1(x) = aα(x)s1(x) .

Again, s1(x) is real and we have split off one root factor aα(x) of

type 2. If q1(x), resp. s1(x), is non-constant, we apply to it the

same procedure and then continue in the same fashion. Eventually

splitting off terminates at the constant polynomial c and we get for

q(x) the stated decomposition. 2

We obtain partial fractions decompositions of rational functions

by means of the next identity.

Proposition 10 (Bachet’s identity) Let p(x) and q(x)

be two real polynomials with no common complex root, i.e.,

p(z) = q(z) = 0 for no z ∈ C. Then there exist polynomials

r(x), s(x) ∈ R[x] such that

r(x) · p(x) + s(x) · q(x) = 1 .
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Proof. For the given polynomials p(x) and q(x) we consider the

set of real polynomials

S = {r(x) · p(x) + s(x) · q(x) | r(x), s(x) ∈ R[x]}
and take nonzero t(x) ∈ S with the minimum degree. We divide

any a(x) ∈ S by t(x) with remainder:

a(x) = t(x) · b(x) + c(x)

where b(x), c(x) ∈ R[x] and deg c(x) < deg t(x) or c(x) is the

zero polynomial. But c(x) = a(x) − b(x) · t(x) ∈ S (because

S is closed to subtraction and multiples). Thus c(x) is the zero

polynomial and a(x) = b(x) · t(x) — t(x) divides any element of

S. But p(x), q(x) ∈ S and so t(x) divides both of them. But

these polynomials have no common complex root and therefore, by

Theorem 8, t(x) is a nonzero constant polynomial. We may assume

that t(x) = 1 and get the stated identity. 2

Theorem 11 (partial fractions) Every rational func-

tion r(x) = p(x)/q(x) ∈ R(x), with q(x) decomposed as

in Corollary 9, expresses as

r(x) = s(x) +

k∑
i=1

mi∑
j=1

βi,j
(x− αi)j

+

l∑
i=1

ni∑
j=1

γi,jx + δi,j
ai(x)j

where s(x) ∈ R[x] is a polynomial, k, l, mi, ni, αi and ai(x)

are as in Corollary 9, and βi,j, γi,j, δi,j ∈ R.

Proof. After dividing Bachet’s identity by p(x)q(x) we have that

1

p(x)q(x)
=
s(x)

p(x)
+
r(x)

q(x)
.
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Iterating this identity we get that for any n real polynomials q1(x),

. . . , qn(x) such that no qi(x) and qj(x) with i 6= j have a common

complex root there exist n real polynomials s1(x), . . . , sn(x) such

that
1

q1(x)q2(x) . . . qn(x)
=

n∑
i=1

si(x)

qi(x)
.

Now let a rational function r(x) = p(x)/q(x) be given and q(x)

be decomposed as in Corollary 9. We use the last displayed identity

for n := k + l, q1(x) := (x − α1)
m1, . . . , qk(x) := (x − αk)

mk ,

qk+1(x) := a1(x)n1, . . . , qk+l(x) := al(x)nl and get real polynomials

b1(x), . . . , bk(x), c1(x), . . . , cl(x) such that

r(x) =
p(x)

q(x)
=

k∑
i=1

bi(x)

(x− αi)mi
+

l∑
i=1

ci(x)

ai(x)ni
.

In each of the above k + l fractions we divide numerator by de-

nominator with remainder: bi(x) = (x − αi)mi · si(x) + di(x) and

ci(x) = ai(x)ni · si+k(x) + di+k(x) where di(x), si(x) ∈ R[x] and

each remainder di(x) is either the zero polynomial or has degree

less than that of the denominator (which is mi or 2ni). With

s(x) :=
∑k+l

i=1 si(x) ∈ R[x] we rewrite the last displayed equality as

r(x) =
p(x)

q(x)
= s(x) +

k∑
i=1

di(x)

(x− αi)mi
+

l∑
i=1

dk+i(x)

ai(x)ni
.

For each i ∈ {1, 2, . . . , k} we repeatedly divide di(x) by x − αi
with remainder and express the i-th summand in the first sum in

the above stated form. We do the same for each summand in the
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second sum. In more details, for example dk+1(x)/a1(x)n1 equals

a1(x) · e(x) + γ1,n1x + δ1,n1
a1(x)n1

=
e(x)

a1(x)n1−1
+
γ1,n1x + δ1,n1
a1(x)n1

,

then we divide e(x) by a1(x) with remainder and so on. 2

• A proof of Theorem 7 on the form of
∫
r(x). Now we can

prove this theorem. We express the given rational function r(x) as

a sum of partial fractions as in the previous theorem:

r(x) = s(x) +

k∑
i=1

mi∑
j=1

βi,j
(x− αi)j

+

l∑
i=1

ni∑
j=1

γi,jx + δi,j
ai(x)j

.

We of course use linearity of antiderivatives and integrate each sum-

mand in the expression separately. It is easy to integrate the first

two terms:
∫
s(x) is a polynomial (on any nontrivial real interval

I),
∫
β/(x − α)j = −β/(j − 1)(x − α)j−1 for any j ≥ 2 and∫

β/(x − α) = β log(|x − α|), where the last two antiderivatives

hold on any nontrivial interval I ⊂ R \ {α}. Thus these contribu-

tions to
∫
r(x) are of the first two types given in Theorem 7.

It remains to integrate the third term, which means to compute

primitives of the form ∫
γx + δ

(x2 + bx + c)j

where j ∈ N and γ, δ, b, c ∈ R are such that b2 − 4c < 0. With

d :=
√
c− b2/4 > 0 and e := (δ − γb/2)/d2j−1 we write the last
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rational function as

γx + δ

(x2 + bx + c)j
=

γ

2
· 2x + b

(x2 + bx + c)j︸ ︷︷ ︸
T :=(... )′/(... )j

+
δ − γb/2

(x2 + bx + c)j

=
γ

2
· T + e · 1/d(

(x/d + b/2d)2 + 1
)j︸ ︷︷ ︸

U :=(... )′/((... )2+1)j

=
γ

2
· T + e · U .

By the first integration by substitution formula,
∫
T = 1/(j −

1)(x2 + bx + c)j−1 for j ≥ 2 and
∫
T = log(x2 + bx + c) for j = 1

(on any nontrivial real interval I). Thus we get contributions to∫
r(x) of the first and third type given in Theorem 7.

Finally, we compute
∫
U . By the first integration by substitution

formula,
∫
U = Ij(x/d + b/2d) (on any nontrivial real interval I)

for

Ij = Ij(y) :=

∫
1

(y2 + 1)j
.

For j ∈ N, integration by parts and differentiation of composite

functions lead to the relation

Ij =

∫
y′ · 1

(y2 + 1)j
=

y

(y2 + 1)j
+ 2j

∫
(y2 + 1)− 1

(y2 + 1)j+1

=
y

(y2 + 1)j
+ 2j · Ij − 2j · Ij+1 .

Hence we get the recurrence I1 = arctan y (by the above table of

primitives) and, for j ∈ N,

Ij+1 =
y

2j · (y2 + 1)j
− (1− 1/2j) · Ij .
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It follows from it that for every j ∈ N,

Ij(y) = u(y) + r · arctan y

where u(y) ∈ Q(y) is a rational function and r ∈ Q. Since
∫
U =

Ij(x/d + b/2d), the last contribution to
∫
r(x) is of the first and

fourth type given in Theorem 7. 2

THANK YOU FOR YOUR ATTENTION!
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