
LECTURE 10, 4/20/2022

AREA UNDER Gf . THE NEWTON INTEGRAL.

INTEGRATION BY PARTS AND BY SUBSTITUTION

• What are antiderivatives good for? For computing areas Af of

domains Df under graphs Gf of functions f : I → R defined on

nontrivial intervals I ⊂ R. Recall that

Gf = {(x, f (x)) | x ∈ I} ⊂ R2

and that I(c, d) ⊂ R denotes the closed interval with the endpoints

c, d ∈ R. We define the domain under Gf as the plane set

Df := {(x, y) | x ∈ I ∧ y ∈ I(0, f (x))} ⊂ R2

(so Gf ⊂ Df). But what exactly is the plane area Af ∈ R of

Df? Two remarks are in order. First, Af will be a signed area,

the parts of Df below the x-axis will contribute to Af negatively

and those above the x-axis positively. Second, Af has not yet been

defined in our lectures and for us it does not yet exist as a rigorous

mathematical object. We bring it in existence only by a precise

definition.

This perspective on Af differs from that of physicists. For con-

tinuous f they may measure Af (say when f ≥ 0) as follows. They

draw Df on a sheet of paper and draw on it also one 1 cm × 1 cm

square S. They cut by scissors both Df and S from the sheet and

weight them. They get the area

Af ≈
weight(Df)

weight(S)
cm2 .

The only thing we mathematicians can say to this is to remark that

the “Df” cut from the paper and the plane set Df ⊂ R2 are two
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completely different things. For mathematicians Af is the area of

Df ⊂ R2 and it does not exist until they define it, and then Af is

what they have defined it to be, which can be done is several ways.1

We give two definitions of Af in Definition 5 and a third one in

Definition 6.

• Riemann sums and telescoping PF sums for Af . Still, we want

to approximate or estimate Af somehow, whatever it is or will be.

We consider two setups, with functions f : I → R where I is an

interval. The first one, in this passage, is of

continuous functions f : [a, b]→ R, for real numbers a < b .

We select a partition P = (a0, a1, . . . , ak) of [a, b], k ∈ N and

a = a0 < a1 < · · · < ak = b, and define the corresponding

Riemann sum as

R(P, t, f ) :=

k∑
i=1

(ai − ai−1) · f (ti) ,

where t = (t1, . . . , tk) with ti ∈ [ai−1, ai] are any k test points

of P . This definition applies to any function f : [a, b] → R, not

only to continuous ones. Note that R(P, t, f ) is the signed area of

the bar graph Bf ⊂ R2 consisting of k bars (rectangles),

Bf :=

k⋃
i=1

[ai−1, ai]× I(0, f (ti)) .

Bars under the x-axis (i.e., with f (ti) < 0) contribute negative

areas. We define the norm of P as

∆(P ) := max({ai − ai−1 | i = 1, 2, . . . , k}) .
1This is at odds with teaching of elementary and high school mathematics on areas of plane figures,

which they view as physical quantities. In high school this is appropriate and OK but we are on University
now.

2



The next proposition shows that all partitions with small norm and

arbitrary test points yield similar Riemann sums.

Proposition 1 (on Riemann sums) Let a, b ∈ R with

a < b and f : [a, b] → R be a continuous function. Then

∀ ε ∃ δ such that if P and Q are partitions of [a, b] with both

norms

∆(P ), ∆(Q) < δ

and t and u are two tuples of test points of P and Q, re-

spectively, then

|R(P, t, f )−R(Q, u, f )| < ε .

Proof. Let a, b and f be as stated, and let an ε be given. By

Theorem 15 in the last lecture we know that f is uniformly con-

tinuous and therefore there is a δ such that for any c, d ∈ [a, b],

|c − d| < δ ⇒ |f (c) − f (d)| < ε/2(b − a). Now suppose that

P = (a0, a1, . . . , ak) is a partition of [a, b] with test points t, that

Q = (b0, b1, . . . , bl) is a partition of [a, b] with test points u, and

that both ∆(P ),∆(Q) < δ. We assume additionally that P ⊂ Q,

i.e., that a0 = bi0 = a, a1 = bi1, . . . , ak = bik = b for some indices

i0 = 0 < i1 < · · · < ik = l. Later we reduce general partitions P
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and Q to this case. We have that

|R(P, t, f )−R(Q, u, f )|

=

∣∣∣∣ k∑
i=1

(ai − ai−1) · f (ti)−
l∑
i=1

(bi − bi−1) · f (ui)

∣∣∣∣
=

∣∣∣∣ k∑
r=1

ir∑
j=ir−1+1

(bj − bj−1) · (f (tr)− f (uj))

∣∣∣∣
|tr−uj |<δ and ∆ ineq.

<

k∑
r=1

ir∑
j=ir−1+1

(bj − bj−1) · ε/2(b− a)

= (b− a) · ε/2(b− a) = ε/2 .

If P and Q are general partitions of [a, b] with respective test

points t and u and with ∆(P ),∆(Q) < δ, we set R := P ∪Q (then

also ∆(R) < δ) and take arbitrary test points v of R. Since P ⊂ R

and Q ⊂ R, we get by the previous case that

|R(P, t, f )−R(Q, u, f )| ≤
≤ |R(P, t, f )−R(R, v, f )| + |R(R, v, f )−R(Q, u, f )|
< ε/2 + ε/2 = ε .

2

Since for small ∆(P ) the bar graph Bf closely approximates the

domain Df , one can expect that R(P, t, f ) → Af as ∆(P ) → 0.

We define this limit formally.
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Definition 2 (limits of Riemann sums) Let a, b, L ∈
R, a < b and f : [a, b] → R be a function, not necessarily

continuous. If for any sequences (Pn) of partitions Pn of

[a, b] and (t(n)) of tuples t(n) of test points of Pn it is true

that

lim ∆(Pn) = 0⇒ lim R(Pn, t(n), f ) = L ,

we write lim∆(P )→0R(P, t, f ) = L and say that the Riemann

sums of f have the limit L.

These limits are unique by definition and below we easily deduce

from Proposition 1 that for continuous functions they always exist.

Corollary 3 (limits of R. sums exist) For every con-

tinuous function f : [a, b] → R, a, b ∈ R with a < b, the

(finite) limit

lim
∆(P )→0

R(P, t, f ) ∈ R

exists.

Proof. Let f , a and b be as stated, and let (Pn) be an arbi-

trary sequence of partitions of the interval [a, b] with respective test

points t(n) and such that lim ∆(Pn) = 0. By Proposition 1 the

sequence (R(Pn, t(n), f )) is Cauchy and therefore it has a limit

L ∈ R. If (Qn) and u(n) is another sequence of partitions of [a, b]

with respective test points u(n) and with lim ∆(Qn) = 0, then by

Proposition 1,

lim
n→∞

(
R(Pn, t(n), f )−R(Qn, u(n), f )

)
= 0 .

Therefore also lim R(Qn, u(n), f ) = L. 2
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However, in this lecture we are more interested in Newton’s ap-

proach to the areas Af . We express the summands (ai−ai−1) ·f (ti)

in Riemann sums in terms of any PF F of the continuous f as fol-

lows; we know that F exists by the last theorem in the previous

lecture. Let P = (a0, a1, . . . , ak) be any partition of [a, b]. We use

Lagrange’s mean value theorem for F and every interval [ai−1, ai]:

F (ai)− F (ai−1)

ai − ai−1
= F ′(ci) = f (ci)

for some point ci ∈ (ai−1, ai). Thus

F (b)− F (a) =

k∑
i=1

(F (ai)− F (ai−1)) =

k∑
i=1

(ai − ai−1) · f (ci)

= R(P, c, f ) ,

with the test points c = (c1, . . . , ck) of P . In view of Proposition 1

we get the following equality.

Corollary 4 (Riemann = Newton) Let a < b be real

numbers, let f : [a, b]→ R be a continuous function and let

F : [a, b]→ R be a primitive of f . Then

lim
∆(P )→0

R(P, t, f ) = F (b)− F (a) .

Proof. Let a, b, f and F be as stated, and let (Pn) be any

sequence of partitions of [a, b] with test points t(n) and such that

lim ∆(Pn) = 0. We know by the above argument that there exist

test points c(n) of Pn such that, for every n.

F (b)− F (a) = R(Pn, c(n), f ) .
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Hence, by the arithmetic of limits of sequences,

limR(Pn, t(n), f )

= lim
(
R(Pn, t(n), f )−R(Pn, c(n), f )

)︸ ︷︷ ︸
= 0 by Prop. 1

+ limR(Pn, c(n), f )︸ ︷︷ ︸
=F (b)−F (a)

= 0 + F (b)− F (a) = F (b)− F (a) .

Thus we get the stated limit. 2

Now we can give two definitions of the area Af of the domain

Df under Gf for any continuous function f : [a, b] → R. By the

previous corollary they give for Af the same value.

Definition 5 (area under graph) Let f : [a, b]→ R, for

real numbers a < b, be a continuous function and Df ⊂ R2

be the domain under its graph Gf , as defined earlier. One

can define the area Af ∈ R of Df in two ways.

1. (I. Newton) Set Af := F (b)− F (a) for any antideriva-

tive F : [a, b]→ R of f .

2. (B. Riemann) Set Af := lim∆(P )→0R(P, t, f ) (see Defi-

nition 2).

At first look these two definitions appear very differently, but we

know well from Corollary 4 that Af is the same in both. The

former is considerably simpler than the latter, but the latter works

in certain cases when the former does not work. Later we will see

that the scopes of both definitions are in fact incomparable.
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For example, if f (x) = x2 : [−1, 1] → R then F (x) = x3/3 is

a primitive of f on [−1, 1]. By Newton’s definition the area of the

domain Df = {(x, y) | − 1 ≤ x ≤ 1 ∧ 0 ≤ y ≤ x2} equals

Af = F (1)− F (−1) =
13

3
− (−1)3

3
=

2

3
.

• The Newton integral. Now we consider the second setup of

functions f : I → R, namely of functions

f : (a, b)→ R, for real a < b, that have a primitive function F .

Definition 6 (Newton integral) Let a, b ∈ R with a < b

and F, f : (a, b)→ R be functions such that F is a primitive

of f . We define the Newton integral of f over the interval

(a, b) as the difference

(N)

∫ b

a

f = F (b)− F (a) := lim
x→b

F (x)− lim
x→a

F (x) ,

if the last two limits exist and are finite. Then we define

the area Af of the domain Df under Gf as

Af := (N)

∫ b

a

f .

By now it is clear that above we need not use one-sided limits. Since

any two primitives F1 and F2 of f differ only by a constant shift,

F1 = F2 + c, the value of (N)
∫ b
a f , if it exists, is independent of the

choice of F . We explain why this latter setup for Af with functions

f : (a, b) → R is strictly more general than the former one with

continuous f : [a, b] → R. If f : [a, b] → R is continuous, by the
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last theorem in Lecture 9 f has a primitive function F : [a, b]→ R.

This F is continuous and therefore

lim
x→a

F (x) = F (a) and lim
x→b

F (x) = F (b) .

So the area Af of Df in the former setup (the first definition in

Definition 5) now equals to its third definition above:

Af = F (b)− F (a) = (N)

∫ b

a

f .

But the situation in Definition 6 is strictly more general than the

former setup because if a function f : (a, b)→ R is such that it has

a primitive F : (a, b)→ R then f need not be continuous. Even if f

is continuous and F is extended to F : [a, b]→ R by limits at a and

b, then the derivatives F ′(a) and F ′(b) need not exist and f cannot

be extended to a and b. As a final remark on the Newton integral

we say that also the name of G. W. Leibniz should be attached to

it but we want to keep the term short.

If for a function f : (a, b) → R, where a < b are real numbers,

the Newton integral (N)
∫ b
a f exists, we say that the function f is

Newton-integrable (on (a, b)) and write that

f ∈ N(a, b) .

It is easy too see that if f ∈ N(a, b) then f ∈ N(c, d) for any

numbers c < d in the interval (a, b). We prove monotonicity of the

Newton integral.
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Proposition 7 (monotonicity of the (N)
∫

) If f, g ∈
N(a, b) and f ≤ g on (a, b) then

(N)

∫ b

a

f ≤ (N)

∫ b

a

g .

Proof. Let F and G be the respective primitives of f and g on

(a, b). We take any numbers c < d in (a, b) and use the Lagrange

mean value theorem for the function F −G and interval [c, d]. We

get that for some point e ∈ (c, d),

(F (d)−G(d))− (F (c)−G(c)) = (F −G)′(e) · (d− c)
= (F ′(e)−G′(e)) · (d− c)
= (f (e)− g(e)) · (d− c) ≤ 0 .

Hence F (d) − F (c) ≤ G(d) − G(c). This inequality is preserved

under the limit transitions c→ a and d→ b and we get the stated

inequality between both Newton integrals. 2

We give two examples of Newton integrals:

(N)

∫ 1

0

√
x =

2 · 13/2

3
− 2 · 03/2

3
=

2

3

but

(N)

∫ 1

0

1

x
= log 1− log 0 = 0− (−∞) =?

does not exist because the limit of the primitive log x at 0 is not

finite.

• Proof of the second case of l’Hospital’s rule. As an application

of the Newton integral we prove the remaining case of l’Hospital’s

10



rule for limx→A g(x) = ±∞ (Condition 2 in Theorem 7 in Lec-

ture 8). We prove first an asymptotics for Newton integrals.

Proposition 8 (asymptotics of (N)
∫

) We assume that

f, g ∈ N(a, b), g > 0 on (a, b), that f (x) = o(g(x)) (x→ a)

and that limx→a (N)
∫ b
x g = +∞. Then

(N)

∫ b

x

f = o

(
(N)

∫ b

x

g

)
(x→ a) .

Proof. Let an ε be given. By the assumption of the first o there

exists a δ ≤ b − a such that x ∈ (a, a + δ) ⇒ |f (x)| < ε
2 · g(x).

By the assumption of the limit +∞ there exists a θ < δ such that

x ∈ (a, a+ θ)⇒ |(N)
∫ b
a+δ f | <

ε
2 · (N)

∫ b
x g. Thus if x ∈ (a, a+ θ)

then∣∣∣∣(N)

∫ b

x

f

∣∣∣∣ =

∣∣∣∣(N)

∫ a+δ

x

f + (N)

∫ b

a+δ

f

∣∣∣∣
∆ ineq.

≤
∣∣∣∣(N)

∫ a+δ

x

f

∣∣∣∣ +

∣∣∣∣(N)

∫ b

a+δ

f

∣∣∣∣
both ⇒s and Prop. 7

<
ε

2
· (N)

∫ b or a+ δ

x

g +
ε

2
· (N)

∫ b

x

g

= ε · (N)

∫ b

x

g .

2
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Theorem 9 (l’Hospital’s rule, Condition 2) Let A ∈
R. Let for a δ functions f, g : P+(A, δ) → R have on

P+(A, δ) finite derivatives, g′ 6= 0 on P+(A, δ), and let

limx→A g(x) = ±∞. Then

lim
x→A

f (x)

g(x)
= lim

x→A

f ′(x)

g′(x)

if the last limit exists. This theorem also holds for left

neighborhoods P−(A, δ), ordinary neighborhoods P (A, δ)

and for A = ±∞.

Proof. Let A, δ, f and g be as stated and let A ∈ R. We assume

that limx→A g(x) = +∞ and g > 0 on (A,A+δ), the case with the

limit −∞ is treated similarly. Let limx→A f
′(x)/g′(x) =: L ∈ R∗.

We assume first that L = 0, i.e., f ′(x) = o(g′(x)) (x→ A). We fix

a θ < δ and get by the previous theorem that

(N)

∫ θ

x

f ′ = o

(
(N)

∫ θ

x

g′
)

(x→ A) ,

which gives that f (x) = f (θ)−o(1)(g(θ)−g(x)). Thus f (x)/g(x) =

f (θ)/g(x) + o(1)(1 − g(θ)/g(x)) = o(1) + o(1)(1 − o(1)) = o(1)

and limx→A f (x)/g(x) = 0 = L.

Let L ∈ R. But then with h(x) := f (x) − Lg(x) we have that

limx→A h
′(x)/g′(x) = 0 and therefore, by the just proved case,

0 = lim
x→A

h(x)

g(x)
= lim

x→A

f (x)

g(x)
− L

and limx→A f (x)/g(x) = L. IfL = +∞ then limx→A g
′(x)/f ′(x) =

0+. Thus by the previous case limx→A g(x)/f (x) = 0+ and we get

that limx→A f (x)/g(x) = +∞.
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For the left deleted neighborhoods P−(A, δ) and for two-sided

neighborhoods P (A, δ) the proofs are similar, and for A = ±∞ we

use the substitution x := 1/y as in the 0
0 case. 2

We took the previous proof of the ∞∞ case of l’Hospital’s rule from pp.

206–7 of the textbook I. I. Ljaško, V. F. Emel’janov and A. K. Bo-

jarčuk, Osnovy klassičeskogo i sovremennogo Matematičeskogo

Analiza (Kiev, 1988).

• The Stirling formula. One can prove the Stirling asymptotic

formula

1 · 2 · . . . · n = n! ∼
√

2πn
(n

e

)n
(n→∞)

by using only the Newton integral (but it is not too simple), for

details see MK, The Newton integral and the Stirling formula,

https://arxiv.org/abs/1907.02553.

In the next three passages we give three (or four or five) re-

sults by which primitives can be computed or can be shown not

to exist. Unlike computing the derivative, which for any func-

tion given by a formula is (using the rules given earlier) fairly

straightforward, computing an antiderivative, when it exists, may

be a complex task. For more information see the article https:

//en.wikipedia.org/wiki/Risch_algorithm on the Risch al-

gorithm.

• The Darboux property. A function f : I → R, defined on an

interval I ⊂ R, has the Darboux property (or is Darboux) if it

attains every intermediate value: if a < b are in I and c is such

that f (a) < c < f (b) or f (a) > c > f (b) then c = f (d) for

some d ∈ (a, b). We proved earlier (Theorem 8 in Lecture 6) that
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continuous functions are Darboux. Now we extend it to a larger

class of functions.

Theorem 10 (derivatives are Darboux) Any function

f : I → R, defined on an interval I ⊂ R, with a primitive

function has the Darboux property.

Proof. We assume that f : [a, b] → R, where a < b are real

numbers, has a primitive function F : [a, b] → R and that f (a) <

c < f (b), the case f (a) > c > f (b) is treated similarly. We consider

the function

G(x) := F (x)− cx : [a, b]→ R .

It has on [a, b] the finite derivative G′(x) = F ′(x)− c = f (x)− c.
In particular, G is continuous. By an earlier theorem (Theorem 13

in Lecture 6), G attains at some d ∈ [a, b] its minimum value. From

G′(a) = f (a)− c < 0 and G′(b) = f (b)− c > 0

it follows (by Proposition 5 in Lecture 8) that d ∈ (a, b). By another

earlier theorem (Theorem 4 in Lecture 7), f (d) − c = G′(d) = 0,

so that f (d) = c. 2

Since every continuous function has a primitive function and since

there exist non-continuous functions which have primitives (Propo-

sition 18 in Lecture 7), the previous class of functions with the

Darboux property is strictly larger than the class of continuous

functions. The theorem is usually used in reverse: if a function

does not have the Darboux property then it has no primitive func-

tion. For example, the signum function sgn(x) is not Darboux on
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any nontrivial interval I 3 0 and therefore it does not have primitive

there.

Recall that the notation

F =

∫
f

for two functions F, f : I → R means that F is a primitive of f .

A simple but useful result says that taking antiderivatives is a linear

operation.

Proposition 11 (linearity of
∫

) Suppose that f, g : I →
R are functions defined on a nontrivial interval I ⊂ R and

that a, b ∈ R. Then∫
(af + bg) = a

∫
f + b

∫
g ,

meaning that if F , resp. G, is an antiderivative of f ,

resp. g, then aF + bG is an antiderivative of af + bg.

Proof. Clearly, if f , g, I , a, b, F and G are as stated, then by

linearity of differentiation

(aF + bG)′ = aF ′ + bG′ = af + bg .

2

Thus we see at once that, for example,
∫

(2 sinx+ x) = 2
∫

sinx+∫
x = −2 cosx + x2/2.

• Integration by parts. This may look as a mere technical result on

primitives, but the impact of this formula is is actually quite wide.

For example, irrationality of certain real numbers can be proven
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by integration by parts (https://kam.mff.cuni.cz/~klazar/

irratByparts.pdf, when I write it down).

Theorem 12 (integration by parts) Suppose that I ⊂
R is a nontrivial interval and that f, g, F,G : I → R are

functions such that F is a primitive of f and G is a prim-

itive of g. Then ∫
fG = FG−

∫
Fg ,

meaning that if H is a primitive of Fg then FG − H is

a primitive of fG.

Proof. This is an immediate consequence of the Leibniz formula

and linearity of differentiation:

(FG−H)′ = F ′G + FG′ −H ′ = fG + Fg − Fg = fG .

2

One can write the integration by parts formula also as∫
F ′G = FG−

∫
FG′ .

If a primitive of FG′ is known, the formula gives a primitive for

F ′G. Note how the prime moves from F to G. For example,∫
log x =

∫
x′ log x = x log x−

∫
x(log x)′

= x log x−
∫
x

x
= x log x− x .
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Or ∫
x sinx =

∫
x(− cosx)′ = −x cosx +

∫
x′ cosx

= −x cosx + sinx .

It is usually easy to check the result by taking the derivative.

• Integration by substitution. This is another useful technique for

computing primitives. The formula has two forms.

Theorem 13 (integration by substitution) If I, J ⊂
R are nontrivial intervals, g : I → J , f : J → R and g

has on I finite g′, then the following hold.

1. If F =
∫
f on J then

F (g) =

∫
f (g) · g′ on I .

2. If g is onto and g′ 6= 0 on I then one has the implication

G =

∫
f (g) · g′ on I ⇒ G(g−1) =

∫
f on J.

Proof. 1. The formula for derivatives of composite functions gives

that (F (g))′ = F ′(g) · g′ = f (g) · g′.
2. Since g′ is Darboux (Theorem 10), either g′ > 0 or g′ < 0

on I . Therefore g either increases or decreases. Thus we have

the continuous inverse g−1 : J → I because g is continuous on an

interval. The formulas for derivatives of composite functions and

17



derivatives of inverse functions give that(
G(g−1)

)′
= G′(g−1) · (g−1)′

= f (
�
����g(g−1)) · ������

g′(g−1) · 1

������g′(g−1)
= f .

2

We give two examples.

Example 1. If F =
∫
f on I and a, b ∈ R with a 6= 0 then the

first formula gives that

F (ax + b)

a
=

∫
f (ax + b) on J := (I − b)/a .

Example 2. What is
∫
f :=

∫ √
1− t2 on J = (−1, 1)? We plug

in for t the function g(x) := sinx : I := (−π/2, π/2)→ J . We get

by integration by parts that∫
f (g) · g′ =

∫
cos2 x =

∫
(sinx)′ cosx

= sinx · cosx−
∫

sinx(cosx)′

= sinx · cosx +

∫
(1− cos2 x)

= sinx · cosx + x−
∫

cos2 x

and therefore∫
f (g) · g′ =

∫
cos2 x =

sinx · cosx + x

2
=: G(x) .

Thus by the second formula and since cos x =
√

1− sin2 x on I ,∫
f =

∫ √
1− t2 = G(g−1) =

t
√

1− t2 + arcsin t

2
.
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It is easy to check this formula by differentiation.

THANK YOU FOR YOUR ATTENTION!
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