
LECTURE 1, 2/16/2022

SETS, FUNCTIONS, REAL NUMBERS

• What does the mathematical analysis analyze? Infinite pro-

cesses and operations. Let us have a look at two paradoxes.
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Then we have the following infinite table with entries −1, 0 and 1
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in which the sum of row sums differs from the sum of column sums.

• Review of logical and set-theoretic notation. Logical connec-

tives: ϕ ∨ ψ . . . or, ϕ ∧ ψ . . . and, ϕ ⇒ ψ . . . implication,

ϕ ⇐⇒ ψ . . . equivalence, ¬ϕ . . . negation. For example, it

always holds that

¬(ϕ ∨ ψ) ⇐⇒ ¬ϕ ∧ ¬ψ .
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Hence brackets and binding strength of each connective are also

important. Quantifiers: ∀x : ϕ(x) . . . for every x it holds that

ϕ(x), ∃x : ϕ(x) . . . there is an x such that ϕ(x) holds. For

example, it always holds that

¬(∃x : ϕ(x)) ⇐⇒ ∀x : ¬ϕ(x) .

We denote the empty set by ∅ and x ∈ A means that the set x

is an element of the set A. A set M may be written down either

by listing its elements, like in

M = {a, b, 2, {∅, {∅}}, {a}}

(how many of them does M have?), or by specifying these elements

by some property. For example (here N := {1, 2, 3, . . . }),

M = {n ∈ N | ∃m ∈ N : n = 2 ·m}

is the set of (all) even natural numbers.

Relations between sets: A ⊂ B
def⇐⇒ ∀x : x ∈ A ⇒ x ∈ B

. . . A is a subset of B, ¬∃x : x ∈ A ∧ x ∈ B . . . A and B are

disjoint, A = B ⇐⇒ (∀x : x ∈ A ⇐⇒ x ∈ B) is the axiom

of extensionality that determines equality of two sets.

Operations with sets: A ∪ B := {x | x ∈ A ∨ x ∈ B} is

their union, A ∩ B := {x ∈ A | x ∈ B} is their intersection,⋃
A := {x | ∃ b ∈ A : x ∈ b} is the sum of A,

⋂
A := {x | ∀ b ∈

A : x ∈ b} is the intersection of A, A \ B := {x ∈ A | x 6∈ B} is

the set difference of A and B, and

P(A) := {X | X ⊂ A}

is the power set of the set A.
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• Ordered pairs and functions. For two sets A and B, the set

(A, B) := {{B, A}, {A}}

is the (ordered) pair of A and B. It always holds that

(A, B) = (A′, B′) ⇐⇒ A = A′ ∧B = B′ .

It is possible to define the ordered triple of sets A, B and C by

(A, B, C) := (A, (B, C)) ,

and similarly the ordered quadruple (A,B,C,D) etc., but it is

better to set

(A, B, C) := {(1, A), (2, B), (3, C)}

etc. The Cartesian product of sets A and B is the set

A×B := {(a, b) | a ∈ A, b ∈ B} .

Any subset C ⊂ A × B is a (binary) relation between A and B.

Instead of (a, b) ∈ C we write aC b, for instance 2 < 5. If A = B,

we speak of a relation on the set A.

Definition 1 (function) A function (or a map) f from

a set A to a set B is any ordered triple

(A, B, f )

such that f ⊂ A × B and for every a ∈ A there is ex-

actly one b ∈ B with a f b. We write that f : A → B and

f (a) = b.
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The set A is the definition domain of the function f and B is its

range. The element b is the value of f on the argument a. For

C ⊂ A, resp. C ⊂ B, the set

f [C] := {f (a) | a ∈ C} ⊂ B , resp.

f−1[C] := {a ∈ A | f (a) ∈ C} ⊂ A ,

is the image of C in f , resp. the preimage of C in f .

• Families of functions, operations with functions. A sequence

(in a set X) is a function

a : N→ X .

We write (an) = (a1, a2, . . . ) ⊂ X and an := a(n), n ∈ N (=

{1, 2, . . . }). A word (over an alphabet X) is a function

u : [n]→ X

for some n ∈ N0 := N∪{0}, where [n] := {1, 2, . . . , n} and [0] := ∅.
For n = 0 also u = ∅. We write u = a1a2 . . . an, where ai := u(i)

for i ∈ [n]. A (binary) operation (on a set X) is a function

o : X ×X → X .

Instead of o((a, b)) = c we write a o b = c, for instance 1 + 1 = 2.

A function f : X → Y is injective (an injection) if for every

a, b ∈ X one has that a 6= b ⇒ f (a) 6= f (b). It is onto (or

surjective, a surjection) if f [X ] = Y . It is one-to-one (or bijec-

tive, a bijection) if it is injective and onto. It is constant if there

is a c ∈ Y such that f (a) = c for every a ∈ X . A function

f : X → X is an identity function if f (a) = a for every a ∈ X .
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If f : X → Y is an injection, the inverse (function) of f is the

function f−1 : f [X ] → X given by f−1(y) = x ⇐⇒ f (x) = y.

For two functions

g : X → Y and f : Y → Z

their composition (or the composed function) is the function

f ◦ g = f (g) : X → Z

given by f (g)(a) := f (g(a)), a ∈ X .

• Linear orders, infima and suprema.

Definition 2 (linear order) A linear order on a set A is

any relation < on A that is (a, b, c ∈ A)

1. irreflexive: ∀ a : a 6< a,

2. transitive: ∀ a, b, c : a < b ∧ b < c ⇒ a < c and

3. trichotomic: ∀ a, b : a < b ∨ b < a ∨ a = b.

Note that 1 and 2 imply that in 3 always exactly one possibility

occurs. The notation a ≤ b means that a < b∨a = b, a > b means

that b < a, and similarly for a ≥ b. We write (A,<) or (A,<A) to

invoke a linear order on A.

Let (A,<) be a linear order on A and let B ⊂ A. We say that

B is bounded from above if there is an a ∈ A such that b ≤ a for

every b ∈ B. Then a is an upper bound of B. Boundedness from

below and lower bounds are defined similarly. The set of all upper

(resp. lower) bounds of B is denoted by U(B) (resp. L(B)). The

maximum (or the largest element) of B, which need not exist, is

a b ∈ B such that ∀ b′ ∈ B : b′ ≤ b. The minimum (or the least
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element) of B is defined similarly. These elements are denoted as

max(B) and min(B).

Definition 3 (supremum and infimum) Suppose that

(A,<) is a linear order on A and B ⊂ A. If U(B) 6= ∅
and min(U(B)) exists, we call it the supremum of B and

denote it by

sup(B) := min(U(B)) .

If L(B) 6= ∅ and max(L(B)) exists, we call it the infimum

of B and denote it by

inf(B) := max(L(B)) .

For example, in the standard linear order of real numbers min((0, 1))

does not exist, min([0, 1)) = 0, inf((0, 1)) = inf([0, 1)) = 0 and

sup(N) does not exist because U(N) = ∅.
• Ordered fields. We need them to define real numbers.
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Definition 4 (ordered field) An ordered field F is an al-

gebraic structure

F = (F, 0F , 1F , +F , ·F , <F )

on a set F that has two distinct distinguished elements 0F
and 1F in F , two operations +F and ·F on F and a linear

order <F on F , and is such that the following axioms hold

(a, b, c ∈ F ).

1. ∀ a : a +F 0F = a ∧ a ·F 1F = a (the element 0F is

neutral in +F , and the element 1F in ·F ).

2. Both operations +F and ·F are associative and commu-

tative.

3. ∀ a, b, c : a ·F (b +F c) = (a ·F b) +F (a ·F c) (the

distributive law holds).

4. ∀ a∃ b : a +F b = 0F , ∀ a 6= 0F ∃ b : a ·F b = 1F
(inverse elements exist).

5. ∀ a, b, c : a <F b⇒ a +F c <F b +F c, ∀ a, b : a, b >F

0F ⇒ a ·F b > 0F (<F respects both operations).

The axioms 1–4 are the axioms of a field. An example of an ordered

field is the fractions (or rational numbers) Q:

Q := {m/n | m, n ∈ Z, n 6= 0} ,

where Z := {. . . ,−1, 0, 1, . . . } are the integers. Another example

is

Q(
√

2) := {r + s
√

2 | r, s ∈ Q} .
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These ordered fields differ, the equation x2 = 2 is insoluble in Q
(we prove it below) but it has a solution in Q(

√
2).

• Incompleteness of the ordered field Q.

Definition 5 (completeness) An ordered field is com-

plete if every nonempty subset of it that is bounded from

above has a supremum.

We show that the ordered field Q is not complete, it follows from the

next theorem. For its proof we recall the principle of induction —

every nonempty set X ⊂ N has the least element.

Theorem 6 (
√

2 6∈ Q) In the field of rational numbers,

the equation

x2 = 2

has no solution.

Proof. We assume the contrary that (a/b)2 = 2 for some a, b ∈ N.

Thus

a2 = 2b2

and by the principle of induction we may assume that the number

a in the equation is minimum. The number a2 is even, therefore

also a is even and a = 2c for some c ∈ N. But then

(2c)2 = 2b2 ; 4c2 = 2b2 ; b2 = 2c2 .

Since b < a, we have obtained a solution of the displayed equation

that has on the left-hand side a number that is smaller than a. This

is a contradiction. 2
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Corollary 7 (incompleteness of Q) The ordered field

Q = (Q, 0, 1, +, ·, <)

of fractions is not complete.

Proof. We show that the set of fractions

X := {r ∈ Q | r2 < 2}

is nonempty and bounded from above but its supremum does not

exist. The first two properties are clear, 4
3 ∈ X and x < 2 for every

x ∈ X . For contrary we take the fraction s := sup(X). If s2 > 2,

there is a fraction r > 0 such that s− r > 0 and still (s− r)2 > 2.

But then s−r > x for every x ∈ X , which contradicts the fact that

s is the least upper bound of X . If s2 < 2, there is a fraction r > 0

such that still (s+ r)2 < 2. Then s+ r ∈ X , which contradicts the

fact that s is an upper bound of X . By trichotomy it must be that

s2 = 2. But this is impossible by the previous theorem. 2

• The complete ordered field R.

Theorem 8 (existence of R) There exists a unique (see

the next theorem) complete ordered field

R = (R, 0R, 1R, +R, ·R, <R) .

We call it the field of real numbers.

Recall the axiom of completeness: if X ⊂ R is nonempty and there

is a y ∈ R such that x ≤R y for every x ∈ X , then the set of such

numbers y has the least element. We shall omit the lower indices
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R for the neutral elements, operations and the linear order. Every

ordered field contains as its prime field (the smallest subfield) a copy

of Q.

We explain how the completeness of an ordered field makes it in

a sense unique. A bijection f : F → G between two ordered fields

is their isomorphism if f (0F ) = 0G, f (1F ) = 1G and for every

x, y ∈ F it holds that

f (x +F y) = f (x) +G f (y), f (x ·F y) = f (x) ·G f (y)

and

x <F y ⇐⇒ f (x) <G f (y) .

Theorem 9 (uniqueness of R) Every two complete or-

dered fields are isomorphic.

Corollary 10 (
√

2 ∈ R) In the field of real numbers, the

equation

x2 = 2

has a solution.

Proof. We take a set similar to that in the proof of Corollary 7,

X := {a ∈ R | a2 < 2} .

By Theorem 8 it has a supremum s := sup(X) ∈ R. The same

arguments as in that proof show that neither s2 < 2 nor s2 > 2.

Hence s2 = 2. 2

In a future lecture we prove a far-reaching generalization of the

previous result. In the next proposition continuity of a function
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roughly means (later we will see a precise definition) that a small

change in the argument of a function results in a small change of

the value.

Proposition 11 (the Bolzano–Cauchy Theorem)

Let a ≤ b be real numbers and

f : [a, b]→ R

be a continuous function such that f (a)f (b) ≤ 0. Then

there is a number c ∈ [a, b] such that f (c) = 0.

• Countable and uncountable sets, uncountability of R. A set

X is infinite if there exists an injection f : N → X . If X is not

infinite, it is finite. One can show that for every finite set X there

is a surjection f : N→ X .

Definition 12 ((un)countable sets) We define the fol-

lowing kinds of sets.

1. X is countable if there is a bijection f : N→ X.

2. A set is at most countable if it is finite or countable.

3. A set is uncountable if it is not at most countable.

Theorem 13 (Q is countable) The set of fractions is

countable.

Proof. For a fraction m
n ∈ Q in lowest terms, which means that

n ∈ N and that the numerator m ∈ Z and the denominator n are

coprime (i.e., the largest k ∈ N dividing simultaneously m and n
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is k = 1), we define the norm ‖mn ‖ := |m| + n ∈ N and sets

Zj := {z1, j < z2, j < · · · < zkj , j | zi, j ∈ Q, ‖zi, j‖ = j}, j ∈ N .

For example,

Z5 = {−4
1 < −

3
2 < −

2
3 < −

1
4 <

1
4 <

2
3 <

3
2 <

4
1} and k5 = 8 .

Here 0
5 6∈ Z5 because 0 and 5 are not coprime. Clearly, j 6= j′⇒ Zj

and Zj′ are disjoint, every Zj is finite (and 6= ∅) and
⋃
j∈NZj = Q.

The map f : N→ Q is defined by

f (1) = z1, 1, f (2) = z2, 1, . . . , f (k1) = zk1, 1, f (k1 + 1) = z1, 2, . . .

— the values of f first run through the k1 sorted fractions in Z1,

then through the k2 sorted fractions in Z2, and so on. For j ∈ N
the generic value equals

f (k1 + k2 + · · · + kj−1 + i) = zi, j, i ∈ [kj] ,

where for j = 1 we define this argument of f as i. It is easy to see

that f is a bijection. 2

We are going to prove the uncountability of real numbers. We

obtain it as a consequence of the next fundamental set-theoretic

result. It says that the power set P(X) is a much larger set than

X .

Theorem 14 (Cantor’s) For no set X there exists a sur-

jection

f : X → P(X)

going from it onto its power set.
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Proof. We assume for the contrary that X is a set and that

f : X → P(X) is a surjective map. We consider the subset

Y := {x ∈ X | x 6∈ f (x)} ⊂ X .

Since f is onto, there exist a y ∈ X such that f (y) = Y . If y ∈ Y ,

by the definition of Y we have that y 6∈ f (y) = Y . If y 6∈ Y = f (y),

the element y has the property defining Y and therefore y ∈ Y . In

both cases we get a contradiction. 2

We denote by {0, 1}N the set of (all) sequences (an) ⊂ {0, 1}.

Corollary 15 (on 0-1 sequences) There is no surjection

f : N→ {0, 1}N .

Proof. The map g : {0, 1}N → P(N), g((an)) := {n ∈ N | an =

1}, is obviously a bijection. If the stated surjection f existed, the

composite map g ◦ f would go from N onto P(N), which would

contradict Theorem 14. 2

Corollary 16 (R is uncountable) The set of real num-

bers is uncountable.

Proof. We again prove more — there is no surjection f : N → R.

We think of the real numbers as of infinite decimal expansions and

take the set

X := {0.a1a2 . . . | an ∈ {0, 1}} ⊂ R

of those with only zeros and ones after the decimal point. Clearly,

we have a bijection g : X → {0, 1}N. If the stated surjection f

existed, we could easily obtain from it a surjection f0 : N→ X (we
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set f0(n) := f (n) if f (n) ∈ X , and f0(n) := 0.000 . . . else). But

then the composite map g◦f0 would go from N onto {0, 1}N, which

would contradict Corollary 15. 2

• Few words on C. We remind complex numbers and one funda-

mental property they possess. It is well known that

C = {a + bi | a, b ∈ R}, i =
√
−1 ,

and that C with the neutral elements 0C := 0 + 0i and 1C := 1 + 0i

and the operations

(a + bi) +C (c + di) := (a +R c) + (b +R d)i

and

(a + bi) ·C (c + di) := (a ·R c −R b ·R d) + (a ·R d +R b ·R c)i

form a field. It has the following important property: so called

Fundamental Theorem of Algebra holds for it.

Theorem 17 (FTA) Every non-constant polynomial p(z)

in C[z] (with complex coefficients) has a root, a number

z0 ∈ C such that

p(z0) = 0 .

THANK YOU FOR YOUR ATTENTION
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