LECTURE 1, 2/16/2022 SETS, FUNCTIONS, REAL NUMBERS

- What does the mathematical analysis analyze? Infinite processes and operations. Let us have a look at two paradoxes.

$$
S=1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\cdots+\underbrace{\frac{1}{n}-\frac{1}{n}}_{=0}+\cdots=0,
$$

but also, after reordering the summands,

$$
S=1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+\cdots+\underbrace{\frac{1}{2 n-1}+\frac{1}{2 n}-\frac{1}{n}}_{\frac{-1}{2 n(2 n-1)}>0}+\cdots>0 \text { ? }
$$

Then we have the following infinite table with entries $-1,0$ and 1

1	-1	0	0	0	\cdots	$\sum=0$
0	1	-1	0	0	\cdots	$\sum=0$
0	0	1	-1	0	\cdots	$\sum=0$
0	0	0	1	-1	\cdots	$\sum=0$
0	0	0	0	1	\cdots	$\sum=0$
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
$\sum=1$	$\sum=0$	$\sum=0$	$\sum=0$	$\sum=0$	\cdots	$\sum=1 \backslash 0$

in which the sum of row sums differs from the sum of column sums.

- Review of logical and set-theoretic notation. Logical connectives: $\varphi \vee \psi \ldots$ or, $\varphi \wedge \psi \ldots$ and, $\varphi \Rightarrow \psi \ldots$ implication, $\varphi \Longleftrightarrow \psi \ldots$ equivalence, $\neg \varphi \ldots$ negation. For example, it always holds that

$$
\neg(\varphi \vee \psi) \Longleftrightarrow \neg \varphi \wedge \neg \psi .
$$

Hence brackets and binding strength of each connective are also important. Quantifiers: $\forall x: \varphi(x) \ldots$ for every x it holds that $\varphi(x), \exists x: \varphi(x) \ldots$ there is an x such that $\varphi(x)$ holds. For example, it always holds that

$$
\neg(\exists x: \varphi(x)) \Longleftrightarrow \forall x: \neg \varphi(x) .
$$

We denote the empty set by \emptyset and $x \in A$ means that the set x is an element of the set A. A set M may be written down either by listing its elements, like in

$$
M=\{a, b, 2,\{\emptyset,\{\emptyset\}\},\{a\}\}
$$

(how many of them does M have?), or by specifying these elements by some property. For example (here $\mathbb{N}:=\{1,2,3, \ldots\}$),

$$
M=\{n \in \mathbb{N} \mid \exists m \in \mathbb{N}: n=2 \cdot m\}
$$

is the set of (all) even natural numbers.
Relations between sets: $A \subset B \stackrel{\text { def }}{\Longleftrightarrow} \forall x: x \in A \Rightarrow x \in B$ $\ldots A$ is a subset of $B, \neg \exists x: x \in A \wedge x \in B \ldots A$ and B are disjoint, $A=B \Longleftrightarrow(\forall x: x \in A \Longleftrightarrow x \in B)$ is the axiom of extensionality that determines equality of two sets.

Operations with sets: $A \cup B:=\{x \mid x \in A \vee x \in B\}$ is their union, $A \cap B:=\{x \in A \mid x \in B\}$ is their intersection, $\bigcup A:=\{x \mid \exists b \in A: x \in b\}$ is the sum of $A, \bigcap A:=\{x \mid \forall b \in$ $A: x \in b\}$ is the intersection of $A, A \backslash B:=\{x \in A \mid x \notin B\}$ is the set difference of A and B, and

$$
\mathcal{P}(A):=\{X \mid X \subset A\}
$$

is the power set of the set A.

- Ordered pairs and functions. For two sets A and B, the set

$$
(A, B):=\{\{B, A\},\{A\}\}
$$

is the (ordered) pair of A and B. It always holds that

$$
(A, B)=\left(A^{\prime}, B^{\prime}\right) \Longleftrightarrow A=A^{\prime} \wedge B=B^{\prime}
$$

It is possible to define the ordered triple of sets A, B and C by

$$
(A, B, C):=(A,(B, C)),
$$

and similarly the ordered quadruple (A, B, C, D) etc., but it is better to set

$$
(A, B, C):=\{(1, A),(2, B),(3, C)\}
$$

etc. The Cartesian product of sets A and B is the set

$$
A \times B:=\{(a, b) \mid a \in A, b \in B\}
$$

Any subset $C \subset A \times B$ is a (binary) relation between A and B. Instead of $(a, b) \in C$ we write $a C b$, for instance $2<5$. If $A=B$, we speak of a relation on the set A.

Definition 1 (function) A function (or a map) from a set A to a set B is any ordered triple
(A, B, f)
such that $f \subset A \times B$ and for every $a \in A$ there is exactly one $b \in B$ with $a f b$. We write that $f: A \rightarrow B$ and $f(a)=b$.

The set A is the definition domain of the function f and B is its range. The element b is the value of f on the argument a. For $C \subset A$, resp. $C \subset B$, the set

$$
\begin{aligned}
f[C] & :=\{f(a) \mid a \in C\} \subset B, \text { resp. } \\
f^{-1}[C] & :=\{a \in A \mid f(a) \in C\} \subset A,
\end{aligned}
$$

is the image of C in f, resp. the preimage of C in f.

- Families of functions, operations with functions. A sequence (in a set X) is a function

$$
a: \mathbb{N} \rightarrow X
$$

We write $\left(a_{n}\right)=\left(a_{1}, a_{2}, \ldots\right) \subset X$ and $a_{n}:=a(n), n \in \mathbb{N}(=$ $\{1,2, \ldots\}$). A word (over an alphabet X) is a function

$$
u:[n] \rightarrow X
$$

for some $n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$, where $[n]:=\{1,2, \ldots, n\}$ and $[0]:=\emptyset$. For $n=0$ also $u=\emptyset$. We write $u=a_{1} a_{2} \ldots a_{n}$, where $a_{i}:=u(i)$ for $i \in[n]$. A (binary) operation (on a set X) is a function

$$
o: X \times X \rightarrow X .
$$

Instead of $o((a, b))=c$ we write $a o b=c$, for instance $1+1=2$.
A function $f: X \rightarrow Y$ is injective (an injection) if for every $a, b \in X$ one has that $a \neq b \Rightarrow f(a) \neq f(b)$. It is onto (or surjective, a surjection) if $f[X]=Y$. It is one-to-one (or bijective, a bijection) if it is injective and onto. It is constant if there is a $c \in Y$ such that $f(a)=c$ for every $a \in X$. A function $f: X \rightarrow X$ is an identity function if $f(a)=a$ for every $a \in X$.

If $f: X \rightarrow Y$ is an injection, the inverse (function) of f is the function $f^{-1}: f[X] \rightarrow X$ given by $f^{-1}(y)=x \Longleftrightarrow f(x)=y$. For two functions

$$
g: X \rightarrow Y \text { and } f: Y \rightarrow Z
$$

their composition (or the composed function) is the function

$$
f \circ g=f(g): X \rightarrow Z
$$

given by $f(g)(a):=f(g(a)), a \in X$.

- Linear orders, infima and suprema.

Definition 2 (linear order) A linear order on a set A is any relation $<$ on A that is $(a, b, c \in A)$

1. irreflexive: $\forall a: a \nless a$,
2. transitive: $\forall a, b, c: a<b \wedge b<c \Rightarrow a<c$ and
3. trichotomic: $\forall a, b: a<b \vee b<a \vee a=b$.

Note that 1 and 2 imply that in 3 always exactly one possibility occurs. The notation $a \leq b$ means that $a<b \vee a=b, a>b$ means that $b<a$, and similarly for $a \geq b$. We write $(A,<)$ or $\left(A,<{ }_{A}\right)$ to invoke a linear order on A.

Let $(A,<)$ be a linear order on A and let $B \subset A$. We say that B is bounded from above if there is an $a \in A$ such that $b \leq a$ for every $b \in B$. Then a is an upper bound of B. Boundedness from below and lower bounds are defined similarly. The set of all upper (resp. lower) bounds of B is denoted by $U(B)$ (resp. $L(B)$). The maximum (or the largest element) of B, which need not exist, is a $b \in B$ such that $\forall b^{\prime} \in B: b^{\prime} \leq b$. The minimum (or the least
element) of B is defined similarly. These elements are denoted as $\max (B)$ and $\min (B)$.

Definition 3 (supremum and infimum) Suppose that $(A,<)$ is a linear order on A and $B \subset A$. If $U(B) \neq \emptyset$ and $\min (U(B))$ exists, we call it the supremum of B and denote it by

$$
\sup (B):=\min (U(B))
$$

If $L(B) \neq \emptyset$ and $\max (L(B))$ exists, we call it the infimum of B and denote it by

$$
\inf (B):=\max (L(B))
$$

For example, in the standard linear order of real numbers min $((0,1))$ does not exist, $\min ([0,1))=0, \inf ((0,1))=\inf ([0,1))=0$ and $\sup (\mathbb{N})$ does not exist because $U(\mathbb{N})=\emptyset$.

- Ordered fields. We need them to define real numbers.

Definition 4 (ordered field) An ordered field F is an algebraic structure

$$
F=\left(F, 0_{F}, 1_{F},+_{F}, \cdot_{F},<_{F}\right)
$$

on a set F that has two distinct distinguished elements 0_{F} and 1_{F} in F, two operations $+_{F}$ and \cdot_{F} on F and a linear order $<_{F}$ on F, and is such that the following axioms hold ($a, b, c \in F$).

1. $\forall a: a+_{F} 0_{F}=a \wedge a \cdot_{F} 1_{F}=a$ (the element 0_{F} is neutral in $+_{F}$, and the element 1_{F} in \cdot_{F}).
2. Both operations $+_{F}$ and \cdot_{F} are associative and commutative.
3. $\forall a, b, c: a \cdot_{F}\left(b+_{F} c\right)=\left(a \cdot_{F} b\right)+{ }_{F}\left(a \cdot_{F} c\right)$ (the distributive law holds).
4. $\forall a \exists b: ~ a+_{F} b=0_{F}, \forall a \neq 0_{F} \exists b: a \cdot{ }_{F} b=1_{F}$ (inverse elements exist).
5. $\forall a, b, c: a<_{F} b \Rightarrow a+_{F} c<_{F} b+_{F} c, \forall a, b: a, b>_{F}$ $0_{F} \Rightarrow a \cdot_{F} b>0_{F}$ ($<_{F}$ respects both operations).

The axioms 1-4 are the axioms of a field. An example of an ordered field is the fractions (or rational numbers) \mathbb{Q} :

$$
\mathbb{Q}:=\{m / n \mid m, n \in \mathbb{Z}, n \neq 0\},
$$

where $\mathbb{Z}:=\{\ldots,-1,0,1, \ldots\}$ are the integers. Another example is

$$
\mathbb{Q}(\sqrt{2}):=\{r+s \sqrt{2} \mid r, s \in \mathbb{Q}\}
$$

These ordered fields differ, the equation $x^{2}=2$ is insoluble in \mathbb{Q} (we prove it below) but it has a solution in $\mathbb{Q}(\sqrt{2})$.

- Incompleteness of the ordered field \mathbb{Q}.

Definition 5 (completeness) An ordered field is complete if every nonempty subset of it that is bounded from above has a supremum.

We show that the ordered field \mathbb{Q} is not complete, it follows from the next theorem. For its proof we recall the principle of inductionevery nonempty set $X \subset \mathbb{N}$ has the least element.

Theorem $6(\sqrt{2} \notin \mathbb{Q})$ In the field of rational numbers, the equation

$$
x^{2}=2
$$

has no solution.
Proof. We assume the contrary that $(a / b)^{2}=2$ for some $a, b \in \mathbb{N}$. Thus

$$
a^{2}=2 b^{2}
$$

and by the principle of induction we may assume that the number a in the equation is minimum. The number a^{2} is even, therefore also a is even and $a=2 c$ for some $c \in \mathbb{N}$. But then

$$
(2 c)^{2}=2 b^{2} \leadsto 4 c^{2}=2 b^{2} \leadsto b^{2}=2 c^{2} .
$$

Since $b<a$, we have obtained a solution of the displayed equation that has on the left-hand side a number that is smaller than a. This is a contradiction.

Corollary 7 (incompleteness of \mathbb{Q}) The ordered field

$$
\mathbb{Q}=(\mathbb{Q}, 0,1,+, \cdot,<)
$$

of fractions is not complete.
Proof. We show that the set of fractions

$$
X:=\left\{r \in \mathbb{Q} \mid r^{2}<2\right\}
$$

is nonempty and bounded from above but its supremum does not exist. The first two properties are clear, $\frac{4}{3} \in X$ and $x<2$ for every $x \in X$. For contrary we take the fraction $s:=\sup (X)$. If $s^{2}>2$, there is a fraction $r>0$ such that $s-r>0$ and still $(s-r)^{2}>2$. But then $s-r>x$ for every $x \in X$, which contradicts the fact that s is the least upper bound of X. If $s^{2}<2$, there is a fraction $r>0$ such that still $(s+r)^{2}<2$. Then $s+r \in X$, which contradicts the fact that s is an upper bound of X. By trichotomy it must be that $s^{2}=2$. But this is impossible by the previous theorem.

- The complete ordered field \mathbb{R}.

Theorem 8 (existence of \mathbb{R}) There exists a unique (see the next theorem) complete ordered field

$$
\mathbb{R}=\left(\mathbb{R}, 0_{\mathbb{R}}, 1_{\mathbb{R}},+_{\mathbb{R}}, \cdot_{\mathbb{R}},<_{\mathbb{R}}\right) .
$$

We call it the field of real numbers.
Recall the axiom of completeness: if $X \subset \mathbb{R}$ is nonempty and there is a $y \in \mathbb{R}$ such that $x \leq_{\mathbb{R}} y$ for every $x \in X$, then the set of such numbers y has the least element. We shall omit the lower indices
\mathbb{R} for the neutral elements, operations and the linear order. Every ordered field contains as its prime field (the smallest subfield) a copy of \mathbb{Q}.

We explain how the completeness of an ordered field makes it in a sense unique. A bijection $f: F \rightarrow G$ between two ordered fields is their isomorphism if $f\left(0_{F}\right)=0_{G}, f\left(1_{F}\right)=1_{G}$ and for every $x, y \in F$ it holds that

$$
f\left(x+_{F} y\right)=f(x)+_{G} f(y), f\left(x \cdot{ }_{F} y\right)=f(x) \cdot G f(y)
$$

and

$$
x<_{F} y \Longleftrightarrow f(x)<_{G} f(y) .
$$

Theorem 9 (uniqueness of \mathbb{R}) Every two complete ordered fields are isomorphic.

Corollary $10(\sqrt{2} \in \mathbb{R})$ In the field of real numbers, the equation

$$
x^{2}=2
$$

has a solution.
Proof. We take a set similar to that in the proof of Corollary 7,

$$
X:=\left\{a \in \mathbb{R} \mid a^{2}<2\right\} .
$$

By Theorem 8 it has a supremum $s:=\sup (X) \in \mathbb{R}$. The same arguments as in that proof show that neither $s^{2}<2$ nor $s^{2}>2$. Hence $s^{2}=2$.

In a future lecture we prove a far-reaching generalization of the previous result. In the next proposition continuity of a function
roughly means (later we will see a precise definition) that a small change in the argument of a function results in a small change of the value.

Proposition 11 (the Bolzano-Cauchy Theorem)

 Let $a \leq b$ be real numbers and$$
f:[a, b] \rightarrow \mathbb{R}
$$

be a continuous function such that $f(a) f(b) \leq 0$. Then there is a number $c \in[a, b]$ such that $f(c)=0$.

- Countable and uncountable sets, uncountability of \mathbb{R}. A set X is infinite if there exists an injection $f: \mathbb{N} \rightarrow X$. If X is not infinite, it is finite. One can show that for every finite set X there is a surjection $f: \mathbb{N} \rightarrow X$.

Definition 12 ((un)countable sets) We define the following kinds of sets.

1. X is countable if there is a bijection $f: \mathbb{N} \rightarrow X$.
2. A set is at most countable if it is finite or countable.
3. A set is uncountable if it is not at most countable.

Theorem 13 (\mathbb{Q} is countable) The set of fractions is countable.

Proof. For a fraction $\frac{m}{n} \in \mathbb{Q}$ in lowest terms, which means that $n \in \mathbb{N}$ and that the numerator $m \in \mathbb{Z}$ and the denominator n are coprime (i.e., the largest $k \in \mathbb{N}$ dividing simultaneously m and n
is $k=1$), we define the norm $\left\|\frac{m}{n}\right\|:=|m|+n \in \mathbb{N}$ and sets

$$
Z_{j}:=\left\{z_{1, j}<z_{2, j}<\cdots<z_{k_{j}, j} \mid z_{i, j} \in \mathbb{Q},\left\|z_{i, j}\right\|=j\right\}, j \in \mathbb{N} .
$$

For example,

$$
Z_{5}=\left\{-\frac{4}{1}<-\frac{3}{2}<-\frac{2}{3}<-\frac{1}{4}<\frac{1}{4}<\frac{2}{3}<\frac{3}{2}<\frac{4}{1}\right\} \text { and } k_{5}=8 .
$$

Here $\frac{0}{5} \notin Z_{5}$ because 0 and 5 are not coprime. Clearly, $j \neq j^{\prime} \Rightarrow Z_{j}$ and $Z_{j^{\prime}}$ are disjoint, every Z_{j} is finite (and $\neq \emptyset$) and $\bigcup_{j \in \mathbb{N}} Z_{j}=\mathbb{Q}$. The map $f: \mathbb{N} \rightarrow \mathbb{Q}$ is defined by
$f(1)=z_{1,1}, f(2)=z_{2,1}, \ldots, f\left(k_{1}\right)=z_{k_{1}, 1}, f\left(k_{1}+1\right)=z_{1,2}, \ldots$

- the values of f first run through the k_{1} sorted fractions in Z_{1}, then through the k_{2} sorted fractions in Z_{2}, and so on. For $j \in \mathbb{N}$ the generic value equals

$$
f\left(k_{1}+k_{2}+\cdots+k_{j-1}+i\right)=z_{i, j}, \quad i \in\left[k_{j}\right],
$$

where for $j=1$ we define this argument of f as i. It is easy to see that f is a bijection.

We are going to prove the uncountability of real numbers. We obtain it as a consequence of the next fundamental set-theoretic result. It says that the power set $\mathcal{P}(X)$ is a much larger set than X.

Theorem 14 (Cantor's) For no set X there exists a surjection

$$
f: X \rightarrow \mathcal{P}(X)
$$

going from it onto its power set.

Proof. We assume for the contrary that X is a set and that $f: X \rightarrow \mathcal{P}(X)$ is a surjective map. We consider the subset

$$
Y:=\{x \in X \mid x \notin f(x)\} \subset X .
$$

Since f is onto, there exist a $y \in X$ such that $f(y)=Y$. If $y \in Y$, by the definition of Y we have that $y \notin f(y)=Y$. If $y \notin Y=f(y)$, the element y has the property defining Y and therefore $y \in Y$. In both cases we get a contradiction.

We denote by $\{0,1\}^{\mathbb{N}}$ the set of (all) sequences $\left(a_{n}\right) \subset\{0,1\}$.
Corollary 15 (on $0-1$ sequences) There is no surjection

$$
f: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}
$$

Proof. The map $g:\{0,1\}^{\mathbb{N}} \rightarrow \mathcal{P}(\mathbb{N}), g\left(\left(a_{n}\right)\right):=\left\{n \in \mathbb{N} \mid a_{n}=\right.$ $1\}$, is obviously a bijection. If the stated surjection f existed, the composite map $g \circ f$ would go from \mathbb{N} onto $\mathcal{P}(\mathbb{N})$, which would contradict Theorem 14.

Corollary 16 (\mathbb{R} is uncountable) The set of real numbers is uncountable.

Proof. We again prove more - there is no surjection $f: \mathbb{N} \rightarrow \mathbb{R}$. We think of the real numbers as of infinite decimal expansions and take the set

$$
X:=\left\{0 . a_{1} a_{2} \ldots \mid a_{n} \in\{0,1\}\right\} \subset \mathbb{R}
$$

of those with only zeros and ones after the decimal point. Clearly, we have a bijection $g: X \rightarrow\{0,1\}^{\mathbb{N}}$. If the stated surjection f existed, we could easily obtain from it a surjection $f_{0}: \mathbb{N} \rightarrow X$ (we
set $f_{0}(n):=f(n)$ if $f(n) \in X$, and $f_{0}(n):=0.000 \ldots$ else). But then the composite map $g \circ f_{0}$ would go from \mathbb{N} onto $\{0,1\}^{\mathbb{N}}$, which would contradict Corollary 15.

- Few words on \mathbb{C}. We remind complex numbers and one fundamental property they possess. It is well known that

$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}, i=\sqrt{-1}
$$

and that \mathbb{C} with the neutral elements $0_{\mathbb{C}}:=0+0 i$ and $1_{\mathbb{C}}:=1+0 i$ and the operations

$$
(a+b i)+_{\mathbb{C}}(c+d i):=\left(a+_{\mathbb{R}} c\right)+\left(b+_{\mathbb{R}} d\right) i
$$

and

$$
(a+b i) \cdot \mathbb{C}(c+d i):=\left(a \cdot \mathbb{R} c-_{\mathbb{R}} b \cdot_{\mathbb{R}} d\right)+\left(a \cdot \mathbb{R} d+_{\mathbb{R}} b \cdot \mathbb{R} c\right) i
$$

form a field. It has the following important property: so called Fundamental Theorem of Algebra holds for it.

Theorem 17 (FTA) Every non-constant polynomial $p(z)$ in $\mathbb{C}[z]$ (with complex coefficients) has a root, a number $z_{0} \in \mathbb{C}$ such that

$$
p\left(z_{0}\right)=0
$$

THANK YOU FOR YOUR ATTENTION

