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Introduction

These lecture notes

Notation. We use ≡ as definitional equality; in x ≡ y the new symbol x is
being defined by the already known expression y. Sometimes x and y exchange
their roles. Recall that f : X → Y , where X and Y are sets, means that f is
a map (function) from X to Y . So f is a set such that f ⊂ X×Y and for every
x ∈ X there is a unique y ∈ Y for which (x, y) ∈ f , which is standardly written
as f(x) = y. Let f : X → Y and Z be any set. The restriction of f to Z is
the map f |Z : X ∩ Z → Y with values (f |Z)(x) ≡ f(x), x ∈ X ∩ Z. Often
we write instead of f |Z just f . The image and the preimage of Z by f is the
respective set

f [Z] ≡ {f(x) : x ∈ X ∩Z} (⊂ Y ) and f−1[Z] ≡ {x ∈ X : f(x) ∈ Z} (⊂ X) .

If Z = {z} is a singleton, we usually write (in analogy with f(x)) instead of
f−1[{z}] just f−1[z].

We denote by N = {1, 2, . . . } the (infinite) set of natural numbers and N0 =
N ∪ {0} are nonnegative integers. For n ∈ N we define [n] ≡ {1, 2, . . . , n}; we
set [0] ≡ ∅. For any finite set X we denote by |X| (∈ N0) the number of its
elements. For any set X and k ∈ N0,(

X
k

)
≡ {Y : Y ⊂ X, Y is finite and |Y | = k} .

Thus
(
X
0

)
= {∅} and

(
X
1

)
= {{x} : x ∈ X} (̸= X). We have

(
X
k

)
= ∅ whenever

X is finite and |X| < k. Also, for finite X the set
(
X
k

)
is finite too and for

0 ≤ k ≤ |X| we have equalities∣∣(X
k

)∣∣ = (|X|
k

)
= |X|(|X|−1)...(|X|−k+1)

k! .

Mostly we work with the sets
(
X
2

)
and call their elements edges.
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Chapter 1

The Ramsey theorem for
pairs: simple bounds

Theorem 1.1 (Ramsey, 1930) Let r, p, k ∈ N. Then there is an n ∈ N such

that for every map χ :
(
[n]
p

)
→ [r] there is a k-element set Y ⊂ [n] for which the

restriction χ |
(
Y
p

)
is constant.

In Chapters 1 and 2 we deal with the function Rr(k) : N2 → N corresponding
to the pairs case p = 2 of the theorem. Its values are called Ramsey numbers
(for pairs) and it is defined as follows.

Definition 1.2 Let r, k ∈ N. We define Rr(k) to be the minimum n ∈ N such

that for every union
(
[n]
2

)
=

⋃r
i=1Xi there exists an index i ∈ [r] and a k-element

set Y ⊂ [n] such that
(
Y
2

)
⊂ Xi.

In Proposition 1.5 we prove that Rr(k) is defined for every r and k. Without
loss of generality the sets Xi may be assumed to be pairwise disjoint and to
form a partition (of

(
[n]
2

)
). This follows from the next proposition.

Proposition 1.3 Let r ∈ N, X be a set and {Yi : i ∈ [r]} be a set system such
that X =

⋃r
i=1 Yi. Then there is a set system {Zi : i ∈ [r]} with the following

properties.

1. Zi ⊂ Yi for every i ∈ [r].

2. X =
⋃r

i=1 Zi.

3. Zi ∩ Zj = ∅ for every i, j ∈ [r] with i ̸= j.

Proof. Let Y0 ≡ ∅ and Zi ≡ Yi \
⋃i−1

j=0 Yj , i ∈ [r]. It is not hard to see that this
set system {Zi : i ∈ [r]} has the three stated properties. 2

An exercise for the reader is to extend this proposition to infinite set systems.
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So in other words, Rr(k) is the minimum n ∈ N such that for every coloring

(map) χ :
(
[n]
2

)
→ [r] there is a set Y ⊂ [n] with |Y | = k for which the

restriction χ |
(
Y
2

)
is a constant map. We say that the set Y is χ-homogeneous.

Yet another equivalent definition of Rr(k) is that it is the minimum n ∈ N such

that for every r-coloring of edges in the complete graph Kn = (n,
(
[n]
2

)
) there is

a monochromatic k-clique.
The following pigeonhole principles, a finite and an infinite one, are Ramsey

theorems for singletons (1-element sets). They were known, of course, long time
before Theorem 1.1.

Proposition 1.4 (pigeonhole principles) Let k, r ∈ N. The following holds.

1. If n ≡ r(k − 1) + 1, X is any finite set with |X| = n and χ : X → [r] is
any map, then there is an i ∈ [r] such that |χ−1(i)| ≥ k.

2. If X is any infinite set and χ : X → [r] is any map, then there is an i ∈ [r]
such that the set χ−1(i) is infinite.

Proof. 1. Since X =
⋃

i∈[r] χ
−1(i) is a partition, if there were no such i then we

would have the contradiction

n = |X| =
∑

i∈[r] |χ−1(i)| ≤
∑

i∈[r](k − 1) = r(k − 1) .

2. If there were no such i, we would have the contradiction that the set
X =

⋃r
i=1 χ

−1(i) is finite as it is a finite (disjoint) union of finite sets. 2

1.1 Finite case

In this section we obtain several elementary upper and lower bounds on the
Ramsey numbers Rr(k) which were introduced in Definition 1.2. First we show

that Rr(k) is defined for every r, k ∈ N. If χ :
(
[n]
2

)
→ [r] and Y ⊂ [n], we say

that the set Y is χ-min-homogeneous if for every e, f ∈
(
Y
2

)
it holds that χ(e) =

χ(f) iff min e = min f . In the next Section 1.2 we consider a generalization of
this kind of colorings.

Proposition 1.5 Let r, k ∈ N. Then R1(k) = k, Rr(1) = 1 and for r, k ≥ 2 we
have the bound Rr(k) ≤ rrk−2.

Proof. The cases when r = 1 or k = 1 are clear. Let r, k ≥ 2. We show, for
the coloring form of Definition 1.2, that n ≡ rrk−2 works. Let χ :

(
[n]
2

)
→ [r]

be any map. We set l ≡ r(k − 1) + 1 and define sets A0 ≡ [n], A1, . . . , Al−1

such that A0 ⊃ A1 ⊃ · · · ⊃ Al−1 ̸= ∅, minA0 = 1 < minA1 < · · · < minAl−1,
that for every i ∈ [l − 1] the edges {minAi−1, x}, x ∈ Ai, have in χ the same
color, and that |Ai| = rrk−2−i, i = 0, 1, . . . , l − 1. Suppose that i ∈ [l − 1]
and that the sets A0, A1, . . . , Ai−1 with the stated properties are already
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defined. By 1 of Proposition 1.4, at least ⌈ |Ai−1|−1
r ⌉ = ⌈ rrk−2−i+1−1

r ⌉ = rrk−2−i

edges {minAi−1, x} with x ∈ Ai−1 \ {minAi−1} have in χ the same color;
we define Ai to be some rrk−2−i endpoints x of such edges. Thus we have
sets A0, A1, . . . , Al−1 with the stated properties; note that Al−1 ̸= ∅ because
rk − 2− (l − 1) = r − 2 ≥ 0. We consider the l-element set

X ≡ {minAi−1 : i ∈ [l]} .

It follows that X is χ-min-homogeneous and we can define the map ψ : X → [r]
by setting ψ(x) ≡ χ(e) for any e ∈

(
X
2

)
with min e = x; for x = maxX when

there is no such e we define ψ(x) arbitrarily. By 1 of Proposition 1.4 there is
a set Y ⊂ X such that |Y | = k and ψ |Y is constant. It follows that Y is the
sought for k-element χ-homogeneous set. 2

In the next chapter we use this bound in the slightly weaker but simpler form
Rr(k) ≤ rrk. Thus in the simplest nontrivial case r = p = 2 of Theorem 1.1 we
have the following upper bound.

Corollary 1.6 For every k ∈ N,

R2(k) ≤ 4k−1 .

1.2 The canonical Ramsey theorem

If k ∈ N, e = {e1, e2, . . . , ek}< in
(N
k

)
is a k-element set of natural numbers with

the elements ei listed increasingly and if I ⊂ [k], we define

e : I ≡ {ei : i ∈ I} .

If X ⊂
(N
k

)
and χ : X → N is any coloring of X (by infinitely many colors),

then we call χ canonical, or more precisely I-canonical, if there is a set I ⊂ [k]
such that for every e, f ∈ X,

χ(e) = χ(f) ⇐⇒ e : I = f : I .

This section is devoted to the function ER(k; l) : N2 → N, especially for k = 2,
defined as follows.

Definition 1.7 Let k, l ∈ N. Then ER(k; l) is the minimum n ∈ N such that

for every coloring χ :
(
[n]
k

)
→ N there exists an l-element set Y ⊂ [n] such that

the restriction χ |
(
Y
k

)
is canonical. We set ER(l) ≡ ER(2; l).

In 1950 P. Erdős and R. Rado proved in [3] that the numbers ER(k; l) exist for
every k, l ∈ N. For k = 1 these numbers are easily determined exactly.

Proposition 1.8 ER(1; l) = (l − 1)2 + 1 for every l ∈ N.
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Proof. Let l ∈ N, n ≡ (l − 1)2 + 1 and χ : [n] → N. Since n =
∑

i∈N |χ−1(i)|,
we see that there is a set X ⊂ [n] such that |X| = l and χ |X is constant or 1-1
(injective). Thus

ER(1; l) ≤ n = (l − 1)2 + 1 .

On the other hand, if we set n ≡ (l − 1)2 and, for i = 1, 2, . . . , l − 1 and
(i− 1)(l − 1) < j ≤ i(l − 1), define the coloring χ : [n] → N by χ(j) ≡ i, we get
the bound ER(1; l) > n = (l− 1)2; for this χ there is no l-element canonical set
(for k = 1). Thus we get the stated equality. 2

In 1996 S. Shelah proved in [10] for any k ≥ 2 a strong general upper bound
on ER(k; l) in the form of an iterated (k − 1)-fold exponential. For k, l ∈ N we
set tow(1; l) ≡ 2l and tow(k; l) ≡ 2tow(k−1;l) for k ≥ 2.

Theorem 1.9 (Shelah, 1996) There is a constant c > 0 such that for every
k, l ∈ N with k ≥ 2,

ER(k; l) ≤ tow
(
k − 1; cl8(2k−1)

)
.

In the rest of this section we prove two theorems on ER(l) = ER(2; l). We
begin with a theorem due to H. Lefmann and V. Rödl. They obtained the easy
lower bound in [6], and the harder to prove upper bound in [7].

Theorem 1.10 (Lefmann and Rödl, 1993 and 1995) For some constants
c1, c2 > 0 and every l ∈ N with l ≥ 2,

2c1l
2

≤ ER(l) ≤ 2c2l
2 log l .

We begin with the lower bound.

The lower bound 2c
2
1l ≤ ER(l)

We prove the lower bound of Lefmann and Rödl and begin with a lemma.

Lemma 1.11 Let k, l ∈ N with k ≤ l and I ⊂ [k] with I ̸= ∅. Then there exist

l − k + 1 sets Xi ∈
(
[l]
k

)
, i ∈ [l − k + 1], such that the l − k + 1 sets

Xi : I, i ∈ [l − k + 1] ,

are mutually distinct

Proof. For i = 0, 1, . . . , l − k set Xi ≡ {i+ 1, i+ 2, . . . , i+ k}. 2

Recall that for t, k, l ∈ N the (classical) Ramsey number Rt(k; l) is the

minimum n ∈ N such that for every χ :
(
[n]
k

)
→ [t] there is an l-element set

X ⊂ [n] such that the restriction χ |
(
X
k

)
is constant.

Proposition 1.12 For every k, l ∈ N with k < l,

ER(k; l) ≥ Rl−k(k; l) .
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Proof. Let k and l be as stated, n ≡ Rl−k(k; l)− 1 and let χ :
(
[n]
k

)
→ [l− k] be

such that there is no l-element χ-monochromatic set. But then there is also no
I ⊂ [k] and no l-element set X ⊂ [n] such that χ |

(
X
k

)
is I-canonical. For I = ∅

it follows from the non-existence of monochromatic set, and for I ̸= ∅ it follows
from Lemma 1.11 which shows that then at least l− k+1 distinct colors would
be needed. Hence ER(k; l) > n and we get the stated inequality. 2

This concludes the proof of the lower bound.

The upper bound 2c2l
2 log l ≥ ER(l)

We prove the upper bound of Lefmann and Rödl.

1.3 Infinite case

Theorem 1.13 (infinite Ramsey for pairs) Let r ∈ N. Then for every map
χ :

(N
2

)
→ [r] there is an infinite χ-homogeneous set, an infinite set Y ⊂ N such

that χ |
(
Y
2

)
is constant.

Proof. Let r and χ be as stated. We define a sequence of infinite sets A0 ≡ N,
A1, . . . such that A0 ⊃ A1 ⊃ . . . , minA0 = 1 < minA1 < . . . and that for
every n the pairs {minAn−1, x}, x ∈ An, have in χ the same color. Suppose that
n ∈ N and that the sets A0, A1, . . . , An−1 with the stated properties are already
defined. By 2 of Proposition 1.4, for infinitely many x ∈ An−1 \{minAn−1} the
edges {minAn−1, x} have in χ the same color; we define An as the set of these
numbers x. Thus we get a sequence of sets (An)n≥0 with the stated properties.
We define the infinite set

X ≡ {minAn−1 : n ∈ N} .

It follows that X is χ-min-homogeneous. As before we can define the map
ψ : X → [r] by setting ψ(x) ≡ χ(e) for any e ∈

(
X
2

)
with min e = x. By 2 of

Proposition 1.4 there is an infinite set Y ⊂ X such that ψ |Y is constant. It
follows that Y is an infinite χ-homogeneous set. 2

Theorem 1.14 (compactness) Let r ∈ N. For every sequence (χn) of col-

orings χn :
(
[n]
2

)
→ [r] there exists a coloring χ :

(N
2

)
→ [r] with the following

property. For every k there is an n, n ≥ k, with

χn |
(
[k]
2

)
= χ |

(
[k]
2

)
.

Proof. Let r and χn, n ∈ N, be as stated. Let F : N →
(N
2

)
be a bijection, thus

the sequence F (1), F (2), . . . enumerates the edges of the countable complete
graph KN. We define by induction on j = 0, 1, . . . infinite sets Aj such that
A0 = N, A0 ⊃ A1 ⊃ . . . and that if Aj = {a1,j < a2,j < . . . }, then for
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every i ∈ [j] the values χa1,j
(F (i)), χa2,j

(F (i)), . . . are all defined (that is,
a1,j ≥ maxF (i)) and are all equal. In other words, for every i ∈ [j] we have
|{χa(F (i)) : a ∈ Aj}| = 1. Suppose that j ∈ N and that the sets A0, A1,
. . . , Aj−1 (with the stated properties) are already defined. We define Aj as any
infinite subset of Aj−1 for which every value χa(F (j)), a ∈ Aj , is defined and
|{χa(F (j)) : a ∈ Aj}| = 1. Such a subset exists by 2 of Proposition 1.4. Thus
we get the sequence of sets (Aj)j≥0 with the stated properties. We define the

map χ :
(N
2

)
→ [r] for e ∈

(N
2

)
by setting, with j ≡ F−1(e),

χ(e) ≡ χa(e) for any a ∈ Aj .

It is clear that this definition is correct— the color χa(e) does not depend
on the element a ∈ Aj —and we show that χ has the stated property. So let

k ∈ N. We take a j ∈ N such that F [ [j] ] ⊃
(
[k]
2

)
and take any n ∈ Aj . Let

e ∈
(
[k]
2

)
. Then by the definition of Aj and χ we have with i ≡ F−1(e) that

n ≥ k, i ∈ [j], n ∈ Ai and thus χ(e) = χn(e), as required. 2

We say that a finite set X ⊂ N is big if |X| ≥ minX.

Theorem 1.15 (big Ramsey for pairs) Let r ∈ N. Then for every k there

is an n such that for every coloring χ :
(
[n]
2

)
→ [r] there exists a big and at least

k-element χ-homogeneous set Y ⊂ [n].

Proof. Let r, k ∈ N. Suppose for the contrary that for every n there is a coloring
χn :

(
[n]
2

)
→ [r] that has no big and at least k-element χn-homogeneous set. It

follows that the same holds for the coloring χ :
(N
2

)
→ [r] obtained from the

sequence (χn) in Theorem 1.14. But this is a contradiction because it is easy to
deduce from Theorem 1.13 that every r-coloring of

(N
2

)
has a big and at least

k-element homogeneous set. Indeed, if ψ :
(N
2

)
→ [r] is any coloring and {a1 <

a2 < . . . } ⊂ N is the infinite ψ-homogeneous set provided by Theorem 1.13,
then

{a1 < a2 < · · · < ak+a1
}

is a big and at least k-element ψ-homogeneous set. 2

Theorem 1.16 (Erdős–Dushnik–Miller) Suppose that κ is an infinite car-
dinal. Then for every partition

(
κ
2

)
= A ∪ B there exists a set C ⊂ κ such that

|C| = ω and
(
C
2

)
⊂ A, or |C| = κ and

(
C
2

)
⊂ B.

Proof.
2
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Chapter 2

The Ramsey theorem for
pairs: the BBCGHMST
bound

Recall that for r, k ∈ N we denote by Rr(k) the minimum n ∈ N such that

for every χ :
(
[n]
2

)
→ [r] there is a k-element monochromatic set: a set X ⊂ [n]

such that |X| = k and the restriction χ |
(
X
2

)
is constant. More generally, for

r, k1, . . . , kr ∈ N we denote by Rr(k1, . . . , kr) the minimum n ∈ N such that for

every χ :
(
[n]
2

)
→ [r] there exists an i ∈ [r] and a ki-element i-monochromatic

set: a set X ⊂ [n] such that |X| = ki and the restriction χ |
(
X
2

)
is constantly i.

If r ∈ N, V ⊂ N is finite, χ :
(
V
2

)
→ [r], u ∈ V and i ∈ [r], we denote by

Ni(u) ≡ {v ∈ V : χ({u, v}) = i}

the “neighborhood of u in colour i”. If A,B ⊂ N are finite and disjoint, we call
the graph

H =
(
A ∪B,

(
A
2

)
∪ {{a, b} : a ∈ A, b ∈ B}

)
the (A,B)-book. If |A| = t and |B| = m, we say that H is the (t,m)-book. Books
are key graphs in the proof of Theorem 2.1 below. The theorem and its proof
are taken from the preprint

Paul Balister, Béla Bollobás, Marcelo Campos, Simon Griffiths, Eoin
Hurley, Robert Morris, Julian Sahasrabudhe and Marius Tiba: Up-
per bounds for multicolour Ramsey numbers, arXiv:2410.17197v1,
17 pp., October 2024.

Theorem 2.1 (T. 5.1) Let r ∈ N with r ≥ 2 and δ ≡ 2−160r−12. Then for
every k ∈ N with k ≥ 2160r16 we have

Rr(k) ≤ e−δkrrk .
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2.1 The proof of Theorem 2.1, modulo the proof
of Theorem ??

Proof of Theorem 2.1. We follow [1], but we rearrange the proof. Let r ≥ 2

and δ ≡ 2−160r−12. Let k ≥ 2160r16 and n ≥ e−δkrrk. Let χ :
(
[n]
2

)
→ [r]. Let

ε ≡ 2−50r−4 and let S1, . . . , Sr and W be the sets from Lemma 2.2.

(((((((((((

Lemma 2.2 (L. 5.2) Let n, r ∈ N, ε > 0 and χ :
(
[n]
2

)
→ [r]. Then there exist

mutually disjoint sets S1, . . . , Sr,W ⊂ [n], where possibly Si = ∅, such that the
following holds.

1. |W | ≥ n ·
(
1+ε
r

)|S1|+···+|Sr|
.

2. For any i ∈ [r] and w ∈W we have |Ni(w) ∩W | ≥ (r−1 − ε)(|W | − 1).

3. For any i ∈ [r], the (Si,W )-book is i-monochromatic in χ.

We prove this lemma later in this section.

)))))))))))

(We continue the proof of Theorem 2.1.) In the first case |S1|+ · · ·+ |Sr| ≥ ε2k.
Then by Lemma 2.3

(((((((((((

Lemma 2.3 (L. 5.3) Let k, r ∈ N with r ≥ 2 and ε ∈ (0, 1). Then for every
s1, . . . , sr ∈ [k] with s ≡ s1 + · · ·+ sr ≥ ε2k we have

Rr(k − s1, . . . , k − sr) ≤ e−ε3k/2 ·
(
1+ε
r

)s · rrk .
Proof.

2

)))))))))))

(we continue the proof of Theorem 2.1) and our lower bounds on n and |W | we
have |W | ≥

2.2 The proof of Theorem ??
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Chapter 3

The Catalan numbers

9



Bibliography

[1] P. Balister, B. Bollobás, M. Campos, S. Griffiths, E. Hurley, R. Morris,
J. Sahasrabudhe and M. Tiba, Upper bounds for multicolour Ramsey num-
bers, arXiv:2410.17197v1, 2024, 17 pp.

[2] M. Campos, S. Griffiths, R. Morris and J. Sahasrabudhe, An exponential
improvement for diagonal Ramsey, arXiv:2303.09521v1, 2023, 57 pp.
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