
ANALYTIC AND COMBINATORIAL NUMBER THEORY
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summer term 2020/21
lecturer: Martin Klazar

LECTURE 1 (4.3.2021). TWO EXAMPLES. THE
FUNDAMENTAL THEOREM OF ALGEBRA.

• ANALYTIC . . . continuous and analytic functions, derivatives, in-
tegrals, methods of mathematical analysis
• COMBINATORIAL . . . applications to combinatorial problems, to
Z (the integers) and other discrete objects
• implicit is ALGEBRAIC . . . applications of formal power series

Let us give a few examples. N = {1, 2, . . . } are the natural numbers
and N0 = {0, 1, 2, . . . } (= N ∪ {0}) are the nonnegative integers.

Z = {. . . , −2, −1, 0, 1, 2, . . . }

are the integers. For a, d ∈ N,

a+ dN0 := {a+ dn | n ∈ N0} = {a, a+ d, a+ 2d, . . . }

is an (infinite) arithmetic progression, shortly AP, where d is called
the common difference. Here are some partitions of N in APs:

N = (1 + 2N0) ∪ (2 + 2N0) = {1, 3, 5, . . . } ∪ {2, 4, 6, . . . }
= (1 + 4N0) ∪ (3 + 4N0) ∪ (2 + 2N0)

= (1 + 8N0) ∪ (5 + 8N0) ∪ (3 + 4N0) ∪ (2 + 2N0)
...

— note that always some common difference is repeated.

Theorem 1. No partition

N =
⋃k
i=1(ai + diN0)

exists such that k ∈ N, ai, di ∈ N, and 1 ≤ d1 ≤ d2 ≤ · · · ≤ dk−1 <
dk — the largest common difference has to be repeated.
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Proof. Analytic proof. Any partition N =
⋃k
i=1(ai + diN0) is equiva-

lent with the equality of functions (z ∈ C)∑
n∈N

zn =
z

1− z
=

k∑
i=1

zai

1− zdi
=

k∑
i=1

∑
n∈ai+diN0

zn, |z| < 1

— recall that
∑∞

n=0 z
a+dn = za/(1−zd). We assume, for contradiction,

that 1 ≤ d1 ≤ d2 ≤ · · · ≤ dk−1 < dk. We take a sequence (zn) ⊂ C
such that |zn| < 1 and

zn → α := e2πi/dk ,

and set z := zn. The LS → α
1−α but the RS →

∑k−1
i=1 α

ai/(1 − αdi) +
∞ =∞, which is a contradiction.

Algebraic proof. We actually do not need to substitute anything for
z and can keep it a formal variable, because the equality

z

1− z
=

k∑
i=1

zai

1− zdi
(*)

with dk > 1, d1, . . . , dk−1 is impossible already from a purely algebraic
reason. It is the same reason by which we know that, for example,

23

100
− 25

72
+

22

26
− 33

35
6= 0 ,

even without evaluating the expression. The reason is that these
fractions are in lowest terms and the prime number p = 13 occurs
exactly once as a divisor of the denominator, namely in the third
fraction. Thus we bring the expression on a common denominator as

a+ 13b

13c
, a, b, c ∈ Z, c 6= 0 ,

and with a not divisible by 13. Thus a + 13b 6= 0 and the expression
is nonzero. This uses unique prime factorization in the ring Z. In
equation (∗) we use unique prime factorization in the ring C[z] and
the irreducible element p = z − α in it that divides the denominator
zdk − 1 but not the others. �

A nice slim (76 pp.) book about applications of analytic methods in
number theory is D. J. Newman’s Analytic Number Theory, Springer-
Verlag, 1998. The previous example (but not the algebraic proof!)
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is taken from it, and it contains many more similar gems. Donald
J. Newman (1930, Brooklyn, NY – 2007, Philadelphia, Pennsylvania)
is most famous for his short proof (in 1980) of the Prime Number
Theorem, which says that

π(x) = #{p | p ≤ x ∧ p is a prime number} ∼ x

log x
as x→ +∞ .

Surely enough, he presents it in his book. I hope to present it in my
lectures too.

An integer partition (above we considered set partitions), shortly
a partition, of n ∈ N is an expression n = a1 + a2 + · · · + ak where
ai ∈ N and the order of summands does not matter. More formally,
it is a k-tuple

λ = (a1, a2, . . . , ak) ∈ Nk such that a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 and∑k
i=1 ai = n .

We write λ ` n and say that the ai are parts of λ. Another format
for λ is

λ = nmn (n− 1)mn−1 . . . 1m1 where mi ∈ N0 and
∑n

i=1mi · i = n .

The mi are multiplicities of the parts i. Exponents 1 are omitted,
as well as powers with exponent 0. For illustration we list all seven
partitions of 5 in both formats:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)

and
5, 41, 32, 312, 221, 213, 15 .

Besides the PNT another famous result in analytic (and combinato-
rial) number theory is the asymptotic formula for the partition function
p(n) = #{λ | λ ` n} which counts partitions of n, namely

p(n) ∼ 1

4
√

3n
eπ
√

2n/3 as n→∞ .

It was found by Godfrey H. Hardy (1877–1947) and Srinivasa Ra-
manujan (1887–1920) in 1918, and slightly later independently by
James V. Uspensky (1883–1947). D. J. Newman gave a relatively
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short analytic proof of it in Michigan J. Math. in 1962. I think that
this time I will also present a proof of it in my lectures.

If we underline in the list of partitions of 5 those with distinct parts
(i.e. mi ≤ 1) and overline those with only odd parts —

5, 41, 32, 312, 221, 213, 15

— we see that we have three partitions of each kind. This holds in
general.

Theorem 2 (L. Euler) For every n ∈ N we have that pd(n) = po(n),
where

pd(n) := #{λ ` n | λ has distinct parts} and

po(n) := #{λ ` n | λ has odd parts} .

Proof. Analytic proof. For every z ∈ C with |z| < 1 we have that

Fd(z) :=
∞∑
n=0

pd(n)zn =
∞∏
n=1

(1 + zn)

and

Fo(z) :=
∞∑
n=0

po(n)zn =
∞∏
n=1

1

1− z2n−1

(as we know,
∑

n≥0 z
nd = 1/(1− zd)). Also, 1 + zn = 1−z2n

1−zn . Thus

Fd(z) =
∞∏
n=1

(1 + zn) =
∞∏
n=1

1− z2n

1− zn
=

∏∞
n=1(1− z2n)∏∞
n=1(1− zn)

=
1∏∞

n=1(1− z2n−1)
=
∞∏
n=1

1

1− z2n−1

= Fo(z) ,

whence pd(n) = po(n) for every n.
Algebraic proof. The previous short proof hides some analytic con-

siderations, and is complete only when these are made explicit (or
at least when one realizes that nontrivial things still remain to be
proven). We (i) need to prove that the generating functions Fd(z)
and Fo(z) are for |z| < 1 really equal to the stated infinite products,
(ii) have to justify manipulations with infinite products in the above
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computation, and (iii) rely in the above “whence” on an identity the-
orem for power series (functional equality is equivalent with equality
of coefficients). But we may again, as in the previous example, for-
get about Fd(z) and Fo(z) as functions and regard them as formal
power series from the ring C[[z]]. Then (i) is very simple, as it follows
from the definitions of the counting quantities pd(n) and po(n), (iii)
is inbuilt in the definition of C[[z]], and only (ii) remains to be shown
(one has to justify manipulation with formal infinite products). This
algebraic proof is simpler than the original analytic one. �

Let us establish the basic and fundamental property of the field C
of complex numbers, its algebraic closedness; we achieve it by means
of the topological notion of connectedness. It is expressed in the
Fundamental Theorem of Algebra.

Theorem 3 (FTA). Every non-constant complex polynomial has
a root in C,

n ∈ N ∧ (a0, a1, . . . , an ∈ C) ∧ an 6= 0

⇒ ∃α ∈ C :
∑n

j=0 ajα
j = 0 .

We prove it in two steps.

Step 1 (reduction). If every polynomial zn + a, where n ∈ N and
a ∈ C, has a root in C, then the FTA holds.

and

Step 2 (C has k-th roots). The field C is closed to taking any root,

∀ k ∈ N ∀ a ∈ C ∃ b ∈ C : bk = a .

Clearly, Step 1 + Step 2 ⇒ FTA.

Proof of Step 1. Let p(z) = a0 + a1z+ · · ·+ anz
n be a degree n ≥ 1

complex polynomial, so an 6= 0. It is easy to see that the function

C 3 z 7→ f(z) := |p(z)| ∈ [0, +∞)

attains at some z = α ∈ C its minimum value. It follows from the
continuity of f(z) (thus it attains minimum on every compact subset
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of C) and the fact, left as an exercise for you, that

lim
|z|→+∞

f(z) = +∞ .

Using the substitution z := z−α, we may assume that the minimum
of f(z) is attained at z = α = 0 (another exercise for you).

We show that if f(0) > 0 then f(z) < f(0) for some point z ∈ C
(close to 0), which would be a contradiction with the minimality of
f(0). So f(0) = |p(0)| = 0, p(0) = 0 and 0 is a root of p(z). We
assume that a0 6= 0, else we are done immediately. We split p(z) as

p(z) = a0 + akz
k + ak+1z

k+1 + · · ·+ anz
n︸ ︷︷ ︸

q(z)

so that k ∈ N, a0 6= 0 and ak 6= 0. Clearly,

q(z) = o(zk) as z → 0 . (o)

Using the assumption we take an α ∈ C such that

αk = −a0
ak

.

By (o) we take a δ ∈ (0, 1) such that |q(δα)| ≤ 1
2δ
k|a0|. Then indeed

f(δα) = |p(δα)| = |a0 − a0δk + q(δα)|
≤ |a0|(1− δk) + |q(δα)|
≤ |a0|(1− δk/2)

< |a0| = |p(0)| = f(0) .

�

Proof of Step 2. We need to show that for every k ∈ N and every
a ∈ C there is a k

√
a ∈ C. For k = 1 this is trivial and for k = 2 it

is left as an exercise for you. Also, from real analysis we know that
if a ∈ [0,+∞) then k

√
a ∈ [0,+∞) exists. Thus we may assume that

k ∈ N is odd and |a| = 1 (any k ∈ N has form k = 2lk′ with l ∈ N0

and odd k′ ∈ N, and for a 6= 0 we can replace a with a/|a|). We
consider the map

f(z) = zk : S := {z ∈ C | |z| = 1} → S
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and show that it is onto. Recall that a set X ⊂ C is disconnected
if there exist disjoint open sets A,B ⊂ C such that we have a (set)
partition

X = (X ∩ A) ∪ (X ∩B)

in which both sets in the union are nonempty. Else the set X is
connected. It is a well known fact in analysis (and an exercise for
you) that if X is connected and g : X → C is a continuous map then
its image g[X] = {g(z) | z ∈ X} is connected.

Now suppose for contradiction that f [S] 6= S and take a c ∈ S\f [S].
Since k is odd, f(−z) = −f(z) and z ∈ f [S] ⇒ −z ∈ f [S], in
particular also −c ∈ S \ f [S]. We take the line ` ⊂ C going through
the points c and −c and define A,B ⊂ C to be the open halfplanes
determined by the line `. Then the partition

f [S] = (f [S] ∩ A) ∪ (f [S] ∩B)

shows that the set f [S] is disconnected. But this is a contradiction
with the above fact because S is connected (exercise . . . ) and f is
continuous. �

THANK YOU!
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