The problem of lines spanning the same angle

Problem: What is the maximum number of lines in the d-dimensional Euclidean space \mathbb{R}^{d} so that between every pair of these lines is the same angle φ ?

Examples:
In \mathbb{R}^{2} there are 3 lines with $\varphi=60^{\circ}$.
In \mathbb{R}^{3} there are 6 lines - connecting the opposite vertices of the icosahedron.

Theorem: $\ln \mathbb{R}^{d}$ at most $\binom{d+1}{2}$ lines may span the same angle. Proof: Assume that n such lines We get: exist. Choose vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ by one each from each line s.t. these vectors are of unit length.

$$
\left\langle\boldsymbol{v}_{i} \mid \boldsymbol{v}_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ \cos \varphi & \text { otherwise }\end{cases}
$$

We show that the matrices $\boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}, \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{T}, \ldots, \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{T} \in \mathbb{R}^{d \times d}$ are linearly independent. Then $n \leq\binom{ d+1}{2}$ as the dimension of the space of symmetric matrices from $\mathbb{R}^{d \times d}$ is at most $\binom{d+1}{2}$.

Linear independence of matrices $\boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}, \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{T}, \ldots, \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{T}$

Assume that $\sum_{i=1}^{n} a_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}=\mathbf{0} \quad$ (the $d \times d$ matrix full of zeroes).
Then for any ${ }_{j \in 1}^{i=1}\{1, \ldots, n\}: 0=\boldsymbol{v}_{j}^{T} \mathbf{0} \boldsymbol{v}_{j}=\boldsymbol{v}_{j}^{T}\left(\sum_{i=1}^{n} a_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}\right) \boldsymbol{v}_{j}=$

$$
=\sum_{i=1}^{n} a_{i} \boldsymbol{v}_{j}^{T} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T} \boldsymbol{v}_{j}=\sum_{i=1}^{n} a_{i}\left\langle\boldsymbol{v}_{i} \mid \boldsymbol{v}_{j}\right\rangle^{2}=a_{j}+\cos ^{2} \varphi \sum_{i \neq j} a_{i}
$$

These conditions on a_{1}, \ldots, a_{n} written as a system of equations:

$$
\left(\begin{array}{cccc}
1 & \cos ^{2} \varphi & \ldots & \cos ^{2} \varphi \\
\cos ^{2} \varphi & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \cos ^{2} \varphi \\
\cos ^{2} \varphi & \cdots & \cos ^{2} \varphi & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The matrix of this system is regular, hence $a_{1}=\ldots=a_{n}=0$. Therefore $\boldsymbol{v}_{1} \boldsymbol{v}_{1}^{T}, \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{T}, \ldots, \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{T}$ are linearly independent.

