Conics and quadrics

[Wiki:] "Conic is a curve obtained as the intersection of the surface of a cone with a plane"

Fig.: en.wikipedia.org/wiki/Conic_section

Conics and quadrics

Definition: *Conic* is the set of solutions of a homogeneous equation with real polynomial od degree two in two unknowns, i.e. :

 $\{ \boldsymbol{x} \in \mathbb{R}^2 : a_{1,1}x_1^2 + a_{1,2}x_1x_2 + a_{2,2}x_2^2 + b_1x_1 + b_2x_2 + c = 0 \}$

Right: $2x_1^2 - 8x_1x_2 + 8x_2^2 + (8\sqrt{5} - 4)x_1 - (16\sqrt{5} + 2)x_2 + 50 = 0$... ellipse ? parabola ? hyperbola

Fig.: www.geogebra.org/graphing

Conics and quadrics

Definition: *Conic* is the set of solutions of a homogeneous equation with real polynomial od degree two in two unknowns, i.e. : $\{x \in \mathbb{R}^2 : a_{1,1}x_1^2 + a_{1,2}x_1x_2 + a_{2,2}x_2^2 + b_1x_1 + b_2x_2 + c = 0\}$ The same written with a matrix $A \in \mathbb{R}^{2\times 2}$ and a vector $b \in \mathbb{R}^2$: $x^T A x + b^T x + c = 0$ (Either choose $a_{2,4} = 0$ or split the coefficient by $x_1 x_2$ symetrically.)

(Either choose $a_{2,1} = 0$ or split the coefficient by x_1x_2 symetrically.) Definition: For a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$, vector $\mathbf{b} \in \mathbb{R}^d$ and a scalar $c \in \mathbb{R}$ the quadrics is the set $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = 0\}$.

In the nondegenerate case we get a (d - 1)-dimensional surface in *d*-dimensional space.

 $x_1^2 + 3x_2^2 - x_3^2$ $+ x_1x_2 + x_1x_3 + 4x_2x_3$ $+ 4x_1 + 5x_2 + 3x_3 + 3 = 0$

Fig.: www.math3d.org

Applications

- planetary motion in astronomy ellipses
- construction of optical mirrors and microphones
 parabolic surfaces
- linear programming ellipsoid method
- physics calculation of stress inside a body or description of a rotational motion of rigid bodies (e.g. gyroscopes)
- statistics principal components analysis e.g. to reduce the size of large data files without significant data loss
- informatics pattern recognition, neural networks
- electronics design and analysis of circuit behavior
- arithmetic, number theory, ...

Quadric transformation

• Given $\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + \mathbf{c} = 0$ with a symmetric \mathbf{A} w.r.t. X.

- We find basis Y so that [id]_{Y,X} is orthogonal and A' = [id]^T_{Y,X}A[id]_{Y,X} is diagonal.
- Substitute (first) x = [id]_{Y,X}y, thus get y^TA'y + b'^Ty + c' = 0 for b' = [id]^T_{Y,X}b and c = c'. Isometry geometrically means a rotation of the coordinates.
- ► For each $a'_{i,i} \neq 0$ subtitute (second) $y_i = z_i \frac{b'_i}{2a'_{i,i}}$. This is a shift in the origin of the coordinate system so that $a'_{i,i}y_i^2 + b'_iy_i = a'_{i,i}\left(z_i - \frac{b'_i}{2a'_{i,i}}\right)^2 + b'_i\left(z_i - \frac{b'_i}{2a'_{i,i}}\right) = a'_{i,i}z_i^2 - \frac{b'_i^2}{4a'_{i,i}}$ that is, nonzero quadratic terms absorb their linear terms. We get $z^T A'' z + b''^T z + c'' = 0$ where A'' = A', $b''_i = \begin{cases} 0 & \text{for } a''_{i,i} \neq 0 \\ b'_i & \text{for } a''_{i,i} = 0 \end{cases}$ and $c'' = c' - \sum_{a''_{i,i} \neq 0} \frac{b_i^2}{4a_{i,i}}$.

Now easily derive shape, axes, center and other parameters.

The resulting parabola: $10z_1^2 - 2\sqrt{5}z_2 + 10 = 0$ (It is also possible to make a vertical shift to the origin.)