Conics and quadrics

[Wiki:] „Conic is a curve obtained as the intersection of the surface of a cone with a plane"

Fig.: en.wikipedia.org/wiki/Conic_section

Conics and quadrics

Definition: Conic is the set of solutions of a homogeneous equation with real polynomial od degree two in two unknowns, i.e. : $\left\{\boldsymbol{x} \in \mathbb{R}^{2}: a_{1,1} x_{1}^{2}+a_{1,2} x_{1} x_{2}+a_{2,2} x_{2}^{2}+b_{1} x_{1}+b_{2} x_{2}+c=0\right\}$

Left: $\left(x_{1}-2\right)^{2}+4\left(x_{2}-2\right)^{2}=16 \ldots$ ellipse
Right: $2 x_{1}^{2}-8 x_{1} x_{2}+8 x_{2}^{2}+(8 \sqrt{5}-4) x_{1}-(16 \sqrt{5}+2) x_{2}+50=0$
... ellipse ? parabola ? hyperbola
Fig.: www.geogebra.org/graphing

Conics and quadrics

Definition: Conic is the set of solutions of a homogeneous equation with real polynomial od degree two in two unknowns, i.e. : $\left\{\boldsymbol{x} \in \mathbb{R}^{2}: a_{1,1} x_{1}^{2}+a_{1,2} x_{1} x_{2}+a_{2,2} x_{2}^{2}+b_{1} x_{1}+b_{2} x_{2}+c=0\right\}$ The same written with a matrix $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$ and a vector $\boldsymbol{b} \in \mathbb{R}^{2}$:

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c=0
$$

(Either choose $a_{2,1}=0$ or split the coefficient by $x_{1} x_{2}$ symetrically.) Definition: For a matrix $\boldsymbol{A} \in \mathbb{R}^{d \times d}$, vector $\boldsymbol{b} \in \mathbb{R}^{d}$ and a scalar $c \in \mathbb{R}$ the quadrics is the set $\left\{\boldsymbol{x} \in \mathbb{R}^{d}: \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c=0\right\}$. In the nondegenerate case we get a $(d-1)$-dimensional surface in d-dimensional space.

$$
\begin{gathered}
x_{1}^{2}+3 x_{2}^{2}-x_{3}^{2} \\
+x_{1} x_{2}+x_{1} x_{3}+4 x_{2} x_{3} \\
+4 x_{1}+5 x_{2}+3 x_{3}+3=0
\end{gathered}
$$

Fig.: www.math3d.org

Applications

- planetary motion in astronomy - ellipses
- construction of optical mirrors and microphones - parabolic surfaces
- linear programming - ellipsoid method
- physics - calculation of stress inside a body or description of a rotational motion of rigid bodies (e.g. gyroscopes)
- statistics - principal components analysis e.g. to reduce the size of large data files without significant data loss
- informatics - pattern recognition, neural networks
- electronics - design and analysis of circuit behavior
- arithmetic, number theory, ...

Quadric transformation

- Given $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c=0$ with a symmetric \boldsymbol{A} w.r.t. X.
- We find basis Y so that $[i d]_{Y, X}$ is orthogonal and $\boldsymbol{A}^{\prime}=[i d]_{Y, X}^{T} \boldsymbol{A}[i d]_{Y, X}$ is diagonal.
- Substitute (first) $\boldsymbol{x}=[i d]_{Y, X \boldsymbol{y}}$, thus get

$$
\boldsymbol{y}^{T} \boldsymbol{A}^{\prime} \boldsymbol{y}+\boldsymbol{b}^{\prime T} \boldsymbol{y}+c^{\prime}=0 \text { for } \boldsymbol{b}^{\prime}=[i d]_{Y, X}^{T} \boldsymbol{b} \text { and } c=c^{\prime} .
$$

Isometry geometrically means a rotation of the coordinates.

- For each $a_{i, i}^{\prime} \neq 0$ subtitute (second) $y_{i}=z_{i}-\frac{b_{i}^{\prime}}{2 a_{i, i}^{\prime}}$.

This is a shift in the origin of the coordinate system so that $a_{i, i}^{\prime} y_{i}^{2}+b_{i}^{\prime} y_{i}=a_{i, i}^{\prime}\left(z_{i}-\frac{b_{i}^{\prime}}{2 a_{i, i}^{\prime}}\right)^{2}+b_{i}^{\prime}\left(z_{i}-\frac{b_{i}^{\prime}}{2 a_{i, i}^{\prime}}\right)=a_{i, i}^{\prime} z_{i}^{2}-\frac{b_{i}^{\prime 2}}{4 a_{i, i}^{\prime}}$ that is, nonzero quadratic terms absorb their linear terms.
We get $\boldsymbol{z}^{\top} \boldsymbol{A}^{\prime \prime} \boldsymbol{z}+\boldsymbol{b}^{\prime \prime} \boldsymbol{z}+c^{\prime \prime}=0$ where $\boldsymbol{A}^{\prime \prime}=\boldsymbol{A}^{\prime}$,
$b_{i}^{\prime \prime}=\left\{\begin{array}{ll}0 & \text { for } a_{i, i}^{\prime \prime} \neq 0 \\ b_{i}^{\prime} & \text { for } a_{i, i}^{\prime \prime}=0\end{array} \quad\right.$ and $\quad c^{\prime \prime}=c^{\prime}-\sum_{a_{i, i}^{\prime \prime} \neq 0} \frac{b_{i}^{2}}{4 a_{i, i}}$.

- Now easily derive shape, axes, center and other parameters.

Example of a transformation

$$
\text { Diagonalize matrix }\left(\begin{array}{cc}
2 & -4 \\
-4 & 8
\end{array}\right) \text { to find the new basis. }
$$

Example of a transformation

Use orthogonal $[i d]_{Y, X}=\left(\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right)$,
to perform only an isometry (axes rotation)

Example of a transformation

Substitute $y_{1}=z_{1}-2, y_{2}=z_{2}$ (horizontal shift)

Example of a transformation

The resulting parabola: $10 z_{1}^{2}-2 \sqrt{5} z_{2}+10=0$
(It is also possible to make a vertical shift to the origin.)

