Questions to understand the topic of the lecture

- Is it true that no quadratic form over a vector space of characteristic two can be diagonalized?
- If there exists a symmetric bilinear form f that corresponds to a given quadratic form g, then is f unique?
- How the coefficients of an analytic expression change if we change the basis?
- Is it true that if a symmetric matrix A can be diagonalized by R^TAR, then R can always be chosen upper triangular?
- Is it true that when a quadratic form g on V over ℝ has diagonal matrix with some 1 and some −1, then there exist vectors u, w ∈ V such that g(u) < 0 < g(w)?</p>

Bilinear and quadratic forms

Definition: Let V be a vector space over a field \mathbb{K} and let a mapping $f : V \times V \to \mathbb{K}$ satisfies:

 $\blacktriangleright \forall u, v \in V, \forall a \in \mathbb{K} : f(au, v) = f(u, av) = af(u, v)$

 $\blacktriangleright \forall u, v, w \in V : f(u + v, w) = f(u, w) + f(v, w)$

 $\blacktriangleright \forall u, v, w \in V : f(u, v + w) = f(u, v) + f(u, w)$

Then f is called a *bilinear form* on V.

A bilinear form is symmetric if $\forall u, v \in V : f(u, v) = f(v, u)$.

A mapping $g: V \to \mathbb{K}$ is called a *quadratic form*, if there exists a bilinear form f such that g(u) = f(u, u) for all $u \in V$.

Examples: Any inner product on a space over \mathbb{R} , but not over \mathbb{C} ! For $V = \mathbb{Z}_5^2$, a bilinear form: $f(\boldsymbol{u}, \boldsymbol{v}) = u_1v_1 + 2u_1v_2 + 4u_2v_1 + 3u_2v_2$ The corresponding quadratic form: $g(\boldsymbol{u}) = f(\boldsymbol{u}, \boldsymbol{u}) = u_1u_1 + 2u_1u_2 + 4u_2u_1 + 3u_2u_2 = u_1^2 + u_1u_2 + 3u_2^2$

Matrices of forms

Definition: Let V be a vector space over a field K and let $X = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ be its basis. The matrix of a bilinear form f w.r.t. the basis X is the matrix **B** defined as $b_{i,i} = f(\mathbf{v}_i, \mathbf{v}_i)$. The matrix of a quadratic form g is the matrix of a symmetric bilinear form f corresponding to g, if such symmetric f exists. Example: For $V = \mathbb{Z}_5^2$, and the canonical basis K, the bilinear form $f(\mathbf{u}, \mathbf{v}) = u_1 v_1 + 2u_1 v_2 + 4u_2 v_1 + 3u_2 v_2 \text{ has matrix } \mathbf{B} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ and $g(\mathbf{u}) = u_1^2 + u_1 u_2 + 3u_2^2$ has matrix $\mathbf{B} = \begin{pmatrix} 1 & 3 \\ 3 & 3 \end{pmatrix}$ On $V = \mathbb{Z}_2^2$ the quadratic form $g(\mathbf{u}) = u_1 u_2$ corresponds e.g. to the bilinear form with matrix $\boldsymbol{B} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ but to no symmetric.

Matrices of forms

Definition: Let V be a vector space over a field K and let $X = (v_1, \ldots, v_n)$ be its basis. The matrix of a bilinear form f w.r.t. the basis X is the matrix **B** defined as $b_{i,j} = f(v_i, v_j)$. The matrix of a quadratic form g is the matrix of a symmetric bilinear form f corresponding to g, if such symmetric f exists.

Observation:
$$b_{i,j} = f(\mathbf{v}_i, \mathbf{v}_j) = \frac{1}{2}(g(\mathbf{v}_i + \mathbf{v}_j) - g(\mathbf{v}_i) - g(\mathbf{v}_j))$$

Proof: $g(\mathbf{v}_i + \mathbf{v}_j) = f(\mathbf{v}_i + \mathbf{v}_j, \mathbf{v}_i + \mathbf{v}_j)$
 $= f(\mathbf{v}_i, \mathbf{v}_i) + f(\mathbf{v}_i, \mathbf{v}_j) + f(\mathbf{v}_j, \mathbf{v}_i) + f(\mathbf{v}_j, \mathbf{v}_j)$
 $g(\mathbf{v}_i + \mathbf{v}_j) - g(\mathbf{v}_i) - g(\mathbf{v}_j) = f(\mathbf{v}_i, \mathbf{v}_j) + f(\mathbf{v}_j, \mathbf{v}_i)$

Observation: The use of matrices of forms:

 $f(\boldsymbol{u}, \boldsymbol{v}) = [\boldsymbol{u}]_X^T \boldsymbol{B}[\boldsymbol{v}]_X, \quad g(\boldsymbol{u}) = [\boldsymbol{u}]_X^T \boldsymbol{B}[\boldsymbol{u}]_X.$ Proof: When $\boldsymbol{u} = \sum_{i=1}^n a_i \boldsymbol{v}_i$ and $\boldsymbol{w} = \sum_{j=1}^n b_j \boldsymbol{v}_j$, then $f(\boldsymbol{u}, \boldsymbol{w}) = f\left(\sum_{i=1}^n a_i \boldsymbol{v}_i, \sum_{j=1}^n b_j \boldsymbol{v}_j\right) = \sum_{i=1}^n \sum_{j=1}^n a_i f(\boldsymbol{v}_i, \boldsymbol{v}_j) b_j = [\boldsymbol{u}]_X^T \boldsymbol{B}[\boldsymbol{w}]_X$ **Definition:** The *analytic expression* of a bilinear form f over \mathbb{K}^n with matrix **B** is the homogeneous polynomial

$$f((x_1,\ldots,x_n)^T,(y_1,\ldots,y_n)^T)=\sum_{i=1}\sum_{j=1}b_{i,j}x_iy_j$$

 \ldots analogously for quadratic forms and/or relative to a basis X.

Observation: Let **B** be a matrix of a b/q form w.r.t. a basis X. Then $[id]_{YX}^T B[id]_{YX}$ is the matrix of the same form w.r.t. Y. Proof: $[\mathbf{u}]_X = [id]_{YX}[\mathbf{u}]_Y$, $[\mathbf{v}]_X = [id]_{YX}[\mathbf{v}]_Y$, $f(\mathbf{u}, \mathbf{v}) = [\mathbf{u}]_X^T B[\mathbf{v}]_X = ([id]_{YX}[\mathbf{u}]_Y)^T B[id]_{YX}[\mathbf{v}]_Y$ $= [\mathbf{u}]_Y^T [id]_{YX}^T B[id]_{YX}[\mathbf{v}]_Y$.

Diagonalization of forms

Theorem: If g is a quadratic form on a vector space V of finite dimension n over a field \mathbb{K} other characteristics than 2, then the form g allows a diagonal matrix B w.r.t. a suitable basis X.

(holds also for symmetric bilinear forms)

Rephrased in terms of matrices:

Theorem: For any symmetric matrix $A \in \mathbb{K}^{n \times n}$ with char $(\mathbb{K}) \neq 2$ there is a regular matrix R such that $R^T A R$ is diagonal.

Compare with the diagonalization of *real* symmetric matrices of linear maps — R could indeed be *orthogonal*: $R^T = R^{-1}$, hence $R^T A R = R^{-1} A R$. Columns of R (ON basis) are *principal axes*.

Example: No way to diagonalize $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ over \mathbb{Z}_2 ,

but over \mathbb{Z}_3 it is possible: $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

Theorem: For any symmetric matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ with char(\mathbb{K}) $\neq 2$ there is a regular matrix **R** such that $\mathbf{R}^T \mathbf{A} \mathbf{R}$ is diagonal. Proof: By induction on *n*. Denote $\mathbf{A} = \mathbf{A}_n = \begin{bmatrix} \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{\tilde{A}} \end{bmatrix}$. If $\alpha \neq 0$, let $\boldsymbol{P}_n = \boxed{ \begin{array}{c|c} 1 & -\frac{1}{\alpha} \boldsymbol{a}^T \\ 0 & \boldsymbol{I}_{n-1} \end{array} }.$ Then $\boldsymbol{P}_n^T \boldsymbol{A}_n \boldsymbol{P}_n = \frac{1}{-\frac{1}{\alpha} \boldsymbol{a}} \frac{1}{\boldsymbol{I}_{n-1}}$ Ã $= \frac{\begin{vmatrix} \alpha & \mathbf{a}^T \\ \mathbf{0} & -\frac{1}{\alpha} \mathbf{a} \mathbf{a}^T + \tilde{\mathbf{A}} \end{vmatrix}}{\mathbf{0} \quad \mathbf{I}_{n-1}} \cdot \frac{1 \quad -\frac{1}{\alpha} \mathbf{a}^T}{\mathbf{0} \quad \mathbf{I}_{n-1}}$ 0

where $\mathbf{A}_{n-1} = \tilde{\mathbf{A}} - \frac{1}{\alpha} \mathbf{a} \mathbf{a}^{T}$ is symmetric.

Theorem: For any symmetric matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ with char $(\mathbb{K}) \neq 2$ there is a regular matrix **R** such that $\mathbf{R}^T \mathbf{A} \mathbf{R}$ is diagonal. Proof: By induction on *n*. Proof: By induction on *n*. Denote $\mathbf{A} = \mathbf{A}_n = \begin{bmatrix} \alpha & \mathbf{a}^T \\ \mathbf{a} & \tilde{\mathbf{A}} \end{bmatrix}$. If $\alpha \neq 0$, let $\mathbf{P}_n = \begin{bmatrix} 1 & -\frac{1}{\alpha} \mathbf{a}^T \\ \mathbf{0} & \mathbf{I}_{n-1} \end{bmatrix}$. Then $\mathbf{P}_n^T \mathbf{A}_n \mathbf{P}_n = \begin{bmatrix} \alpha & \mathbf{0}^T \\ \mathbf{0} & \mathbf{A}_{n-1} \end{bmatrix}$. with A_{n-1} symmetric. By induction hypothesis there exists \mathbf{R}_{n-1} for \mathbf{A}_{n-1} . We choose $\mathbf{R}_n = \mathbf{P}_n \cdot \mathbf{P}_n$ R_{n-1} 0 Then $\boldsymbol{R}_n^T \boldsymbol{A}_n \boldsymbol{R}_n = \left| \begin{array}{c} 1 & 0' \\ 0 & \boldsymbol{R}_{n-1}^T \end{array} \right| \cdot \boldsymbol{P}_n^T \boldsymbol{A}_n \boldsymbol{P}_n \cdot \left| \begin{array}{c} 1 & 0' \\ 0 & \boldsymbol{R}_{n-1} \end{array} \right|$ $\begin{array}{c|c} \alpha & \mathbf{0}^T \\ \hline \mathbf{0} & \mathbf{R}_{n-1}^T \mathbf{A}_{n-1} \mathbf{R}_{n-1} \end{array}$ α is diagonal.

Theorem: For any symmetric matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ with char $(\mathbb{K}) \neq 2$ there is a regular matrix **R** such that $\mathbf{R}^T \mathbf{A} \mathbf{R}$ is diagonal. Proof: By induction on *n*. Denote $\mathbf{A} = \mathbf{A}_n = \begin{bmatrix} \alpha & \alpha \\ a & \tilde{A} \end{bmatrix}$. If $\alpha \neq 0$, let $\boldsymbol{P}_n = \begin{bmatrix} 1 & -\frac{1}{\alpha} \boldsymbol{a}^T \\ 0 & \boldsymbol{I}_{n-1} \end{bmatrix}$. Then $\boldsymbol{P}_n^T \boldsymbol{A}_n \boldsymbol{P}_n = \begin{bmatrix} \alpha & 0^T \\ 0 & \boldsymbol{A}_{n-1} \end{bmatrix}$ with A_{n-1} symmetric. By induction hypothesis there exists \mathbf{R}_{n-1} for \mathbf{A}_{n-1} . We choose $\mathbf{R}_n = \mathbf{P}_n$. R_{n-1} Then $\mathbf{R}_n^{\mathsf{T}} \mathbf{A}_n \mathbf{R}_n$ is diagonal. Example: $\mathbb{K} = \mathbb{Z}_3$, $\mathbf{A}_3 = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$, $\alpha = 2$, $\mathbf{P}_3 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\boldsymbol{A}_{2} = \tilde{\boldsymbol{A}} - \frac{1}{\alpha}\boldsymbol{a}\boldsymbol{a}^{T} = \begin{pmatrix} 0 & 2\\ 2 & 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 2\\ 1 \end{pmatrix} (2,1) = \begin{pmatrix} 1 & 1\\ 1 & 2 \end{pmatrix}, \ \boldsymbol{R}_{2} = \begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix},$ $\boldsymbol{R}_{3} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \ \boldsymbol{R}_{3}^{T} \boldsymbol{A}_{3} \boldsymbol{R}_{3} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Theorem: For any symmetric matrix $A \in \mathbb{K}^{n \times n}$ with char $(\mathbb{K}) \neq 2$ there is a regular matrix R such that $R^T A R$ is diagonal.

Proof: By induction on *n*.
Denote
$$\mathbf{A} = \mathbf{A}_n = \begin{bmatrix} \alpha & \mathbf{a}^T \\ \mathbf{a} & \tilde{\mathbf{A}} \end{bmatrix}$$
.
If $\alpha \neq 0$, let $\mathbf{P}_n = \begin{bmatrix} 1 & -\frac{1}{\alpha} \mathbf{a}^T \\ \mathbf{0} & \mathbf{I}_{n-1} \end{bmatrix}$. Then $\mathbf{P}_n^T \mathbf{A}_n \mathbf{P}_n = \begin{bmatrix} \alpha & \mathbf{0}^T \\ \mathbf{0} & \mathbf{A}_{n-1} \end{bmatrix}$.

with A_{n-1} symmetric. By induction hypothesis there exists R_{n-1} for A_{n-1} . We choose $R_n = P_n \cdot \begin{bmatrix} 1 & 0^T \\ 0 & R_{n-1} \end{bmatrix}$ Then $R_n^T A_n R_n$ is diagonal.

If $\alpha = 0$ but $\mathbf{a} \neq \mathbf{0}$, then $a_{i,1} \neq 0$ for some *i*. Use the elementary matrix \mathbf{E} for adding the *i*-th column to the first. Take $\mathbf{A}' = \mathbf{E}^T \mathbf{A} \mathbf{E}$ instead of \mathbf{A} . As $\alpha' = 2a_{i,1} \neq 0$, we may follow the previous case.

If $\alpha = 0$ and $\mathbf{a} = \mathbf{0}$, then let $\mathbf{A}_{n-1} = \tilde{\mathbf{A}}$ and get $\mathbf{R}_n =$

$$\begin{array}{c|c} 1 & \mathbf{0}^T \\ \hline \mathbf{0} & \mathbf{R}_{n-1} \end{array}$$

Methods of diagonalization

- Real symmetric matrices can be diagonalized with orthonormal eigenvectors.
- By Gaussian elimination we perform each operation simultaneously on both rows and columns.

Observation: If **A** is symmetric then $\mathbf{A}' = \mathbf{E}^T \mathbf{A} \mathbf{E}$ is symmetric too. Corollary: Lower triangular $\mathbf{R}^T \mathbf{A} \mathbf{R}$ is diagonal.

Example:

 $\begin{pmatrix} 2 & 2 & 1 & | & 1 & 0 & 0 \\ 2 & 0 & 2 & | & 0 & 1 & 0 \\ 1 & 2 & 1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow[\text{rew}]{H-I} \begin{pmatrix} 2 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 1 & 2 & 1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow[\text{rew}]{H-I} \begin{pmatrix} 2 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix}$ $\begin{array}{c} \text{III+I} \\ \stackrel{\text{rew}}{\sim} \begin{pmatrix} 2 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 2 & 1 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 1 \end{pmatrix} \xrightarrow[\text{rew}]{H-II} \begin{pmatrix} 2 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & 0 & 1 & | & 2 & 2 & 1 \end{pmatrix}$

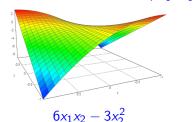
The diagonal matrix $\mathbf{R}^T \mathbf{A} \mathbf{R}$ is on the left. On the right is the matrix of *row* operations, i.e. \mathbf{R}^T .

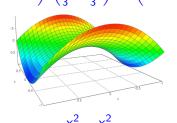
Theorem: Every quadratic form on a finitely generated *real* vector space allows a diagonal matrix with only 1, -1 and 0. Moreover, all such diagonal matrices corresponding to the same form have the same number of 1's and the same number of -1's.

Definition: Let a real quadratic form g is represented by a diagonal matrix **B** containing only 1, -1 and 0. The *signature* of the form g is the triple (#1, #-1, #0), counted along the diagonal of the matrix **B**.

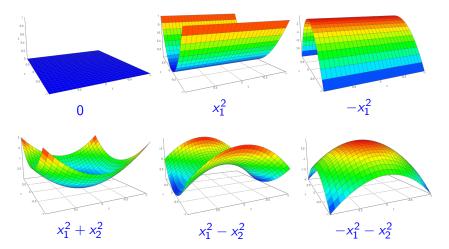
Theorem: Every quadratic form on a finitely generated *real* vector space allows a diagonal matrix with only 1, -1 and 0. Moreover, all such diagonal matrices corresponding to the same form have the same number of 1's and the same number of -1's.

Example: $g : \mathbb{R}^2 \to \mathbb{R}$ given by $\mathbf{B} = \begin{pmatrix} 0 & 3 \\ 3 & -3 \end{pmatrix}$ w.r.t. *K*. The matrix of g w.r.t. the basis: $X = \{ \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}^T, \begin{pmatrix} -\frac{1}{3}, \frac{1}{3} \end{pmatrix}^T \}$ is $\mathbf{B}' = [id]_{XK}^T \mathbf{B} [id]_{XK} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$





The six cases of diagonalized quadratic forms $\mathbb{R}^2 \to \mathbb{R}$



(ordered by the rank and then 1 before -1)

Theorem: Every quadratic form on a finitely generated *real* vector space allows a diagonal matrix with only 1, -1 and 0.

Moreover, all such diagonal matrices corresponding to the same form have the same number of 1's and the same number of -1's. Proof:

1. Existence: Let **B** be the matrix of the form. w.r.t. some basis Y. Real symmetric matrices can be diagonalized, i.e. any $\mathbf{B} = \mathbf{R}^T \mathbf{D} \mathbf{R}$ for a regular **R**. $\begin{pmatrix} = 0 & d'_{i,i} = 0, & s_{i,i} = 1 \end{pmatrix}$

for a regular **R**. Split **D** as $S^T D'S$ where $d_{i,i} \begin{cases} = 0 \quad d'_{i,i} = 0, \quad s_{i,i} = 1 \\ > 0 \quad d'_{i,i} = 1, \quad s_{i,i} = \sqrt{d_{i,i}} \\ < 0 \quad d'_{i,i} = -1, s_{i,i} = \sqrt{-d_{i,i}} \end{cases}$

Now **SR** is regular and $B = (SR)^T D'SR$. Choose the basis X, the coordinates of vectors of X w.r.t. Y are the columns of **SR**, i.e. $[id]_{X,Y} = SR$ and also $[id]_{Y,X} = (SR)^{-1}$. Now $[id]_{Y,X}^T B[id]_{Y,X} = ((SR)^{-1})^T (SR)^T D'SR(SR)^{-1} = D'$ is the desired diagonal matrix of the form.

Theorem: Every quadratic form on a finitely generated *real* vector space allows a diagonal matrix with only 1, -1 and 0. Moreover, all such diagonal matrices corresponding to the same form have the same number of 1's and the same number of -1's.

Example:

$$B = \begin{pmatrix} 7 & -10 & -2 \\ -10 & 4 & 8 \\ -2 & 8 & -2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \end{pmatrix} \begin{pmatrix} 18 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \end{pmatrix} = R^{T} DR$$
$$D = \begin{pmatrix} 18 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3\sqrt{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3\sqrt{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3\sqrt{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} = S^{T} D'S$$
$$[id]_{X,Y} = SR = \begin{pmatrix} 3\sqrt{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{pmatrix} = \begin{pmatrix} 2\sqrt{2} & -2\sqrt{2} & -\sqrt{2} \\ 1 & 2 & -2 \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
$$B = R^{T} DR = R^{T} S^{T} D'SR = (SR)^{T} D'SR = [id]^{T} D'[id]_{Y,Y}$$

 $B = R' DR = R' S' D'SR = (SR)' D'SR = [id]_{X,Y}' D'[id]_{X,Y}$ $\iff [id]_{Y,X}^T B[id]_{Y,X} = D'$

2. Uniqueness of the numbers of 1's, -1's (and hence also 0's): Let $X = (u_1, \ldots, u_n)$, $Y = (v_1, \ldots, v_n)$ be two bases s.t. the corresponding matrices **B** and **B**' of the form **g** are diagonal with 1's, -1's and 0's ordered. s.t. 1's are first, then -1's and 0's are last.

As products with regular matrices $[id]_{XY}$ do not change the rank: #0's in $\mathbf{B} = n - \operatorname{rank}(\mathbf{B}) = n - \operatorname{rank}(\mathbf{B}') = \#0$'s in \mathbf{B}' .

Let r = #1's in B, s = #1's in B'. If r > s, then consider the subspaces $\mathcal{L}(u_1, \ldots, u_r)$ and $\mathcal{L}(v_{s+1}, \ldots, v_n)$. The sum of their dimensions r + n - s exceeds n, hence they intersect nontrivially.

$$\begin{array}{c|c} X & \mathbb{R}^n & \dim = n & Y \\ \hline \bullet \mathbf{u}_1 & \mathcal{L}(\mathbf{u}_1, \dots, \mathbf{u}_r) & \bullet \mathbf{v}_1 \\ & \dim = r & \bullet \mathbf{v}_s \\ \bullet \mathbf{u}_r & \bullet \mathbf{0} & \dim \ge 1 \bullet \mathbf{w} \\ \bullet \mathbf{u}_{r+1} & \mathcal{L}(\mathbf{v}_{s+1}, \dots, \mathbf{v}_n) \\ \bullet \mathbf{u}_n & \dim = n - s & \bullet \mathbf{v}_n \end{array}$$

We use a fact from WT: $\dim(U) + \dim(V) =$ $\dim(U \cap V) + \dim(\mathcal{L}(U \cup V))$

LHS is strictly bigger than n, $\dim(\mathcal{L}(U \cup V)) \leq \dim(\mathbb{R}^n) = n$ $\Longrightarrow \dim(U \cap V) \geq 1$ 2. Uniqueness of the numbers of 1's, -1's (and hence also 0's): Let $X = (u_1, \ldots, u_n)$, $Y = (v_1, \ldots, v_n)$ be two bases s.t. the corresponding matrices **B** and **B**' of the form g are diagonal with 1's, -1's and 0's ordered. s.t. 1's are first, then -1's and 0's are last.

As products with regular matrices $[id]_{XY}$ do not change the rank: #0's in $\mathbf{B} = n - \operatorname{rank}(\mathbf{B}) = n - \operatorname{rank}(\mathbf{B}') = \#0$'s in \mathbf{B}' .

Let r = #1's in B, s = #1's in B'. If r > s, then consider the subspaces $\mathcal{L}(u_1, \ldots, u_r)$ and $\mathcal{L}(v_{s+1}, \ldots, v_n)$. The sum of their dimensions r + n - s exceeds n, hence they intersect nontrivially.

Choose $\boldsymbol{w} \in (\mathcal{L}(\boldsymbol{u}_1, \ldots, \boldsymbol{u}_r) \cap \mathcal{L}(\boldsymbol{v}_{s+1}, \ldots, \boldsymbol{v}_n)) \setminus \mathbf{0}$, thus $[\boldsymbol{w}]_X = (x_1, \ldots, x_r, 0, \ldots, 0)^T$, $[\boldsymbol{w}]_Y = (0, \ldots, 0, y_{s+1}, \ldots, y_n)^T$. Now $g(\boldsymbol{w}) = [\boldsymbol{w}]_X^T \boldsymbol{B}[\boldsymbol{w}]_X = x_1^2 + \cdots + x_r^2 > 0$ (> as $\boldsymbol{w} \neq \mathbf{0}$), but $g(\boldsymbol{w}) = [\boldsymbol{w}]_Y^T \boldsymbol{B}'[\boldsymbol{w}]_Y = -y_{s+1}^2 - \cdots - y_{rank(\boldsymbol{B}')}^2 \leq 0$, contradiction. Therefore $r \neq s$, by symmetry also $s \neq r$, hence r = s.

Comments

Observation: Forms with *real* positive definite matrices are those that could be diagonalized into I_n

— compare Cholesky factorization $\mathbf{A} = \mathbf{U}^{H}\mathbf{U} = \mathbf{U}^{T}\mathbf{I}_{n}\mathbf{U}$.

Observation: An analogous statement for *complex symmetric* forms (other property than Hermitian!) yields diagonal matrices with 1's and 0's on the diagonal; including the inertia.