
Questions to understand the topic of the lecture

I Can any singular matrix be positive definite?
I Can Cholesky decomposition be performed on matrices

which are not Hermitian?
I Why when testing positive definite matrices by Gaussian

elimination we cannot change the order of the rows?
I Do have negative definite matrices, i.e. Hermitian A,

s.t. ∀x 6= 0 : xHAx < 0, always a negative determinant?



Gram matrix

Theorem: Let V be an inner space and X = (v1, . . . , vn) its basis.
Then the so called Gram matrix A defined as ai ,j = 〈vi |vj〉 satisfies:

∀u,w ∈ V : 〈u|w〉 = [w ]HX AT [u]X

Observe that when X is orthonormal then A = In.

Proof: Denote [u]X = (α1, . . . , αn)T , [w ]X = (β1, . . . , βn)T ,
i.e. u =

n∑
i=1

αivi and w =
n∑

j=1
βjvj . Then we get

〈u|w〉 =
〈 n∑

i=1
αivi

∣∣∣ n∑
j=1

βjvj
〉

=
n∑

i=1

n∑
j=1

αiβj〈vi |vj〉 = [w ]HX AT [u]X

Properties of every Gram matrix:
I As 〈vi |vj〉 = 〈vj |vi〉, i.e. ai ,j = aj,i , the matrix is Hermitian
I As 〈u|u〉 > 0 for all u 6= 0, it also holds that [u]HX AT [u]X > 0.



Positive definite matrices

Definition: If a Hermitian matrix A of order n satisfies
∀x ∈ Cn \ 0 : xHAx > 0, then the matrix is positive definite.

Applications:
I Finding extremes of real function of more variables — if the

(Hessian) matrix obtained by the second order partial
derivatives is positive definitive, then it is a local minimum.

I Extension of optimization programs.

Example:
(
1 2
2 5

)
. . . but how the condition could

be verified for all x ∈ C2\0?

Exercise: Show that if A,B are positive definite of the same order
then A + B and A−1 are also positive definite.



Characterization of positive definite matrices

Theorem: For a Hermitian matrix A the following are equivalent:
1. A is positive definite
2. A has all eigenvalues positive
3. There is a regular matrix U such that A = UHU

Proof: 1⇒ 2 : As A is Hermitian, it has all eigenvalues real.
Let x be a nontrivial eigenvector corresponding to an eigenvalue λ.
Then 0 < xHAx = λxHx = λ〈x|x〉. As 〈x|x〉 > 0, we get λ > 0.

2⇒ 3 : As A is Hermitian, there are unitary R and diagonal D
such that A = RHDR. Set a diagonal matrix D̃ : d̃ii =

√
dii , and

U = D̃R. Now UHU = (D̃R)HD̃R = RHD̃HD̃R = RHDR = A.
U is regular since unitary and diagonal matrices are regular too.

3⇒ 1 : If x ∈ Cn \ 0, then Ux 6= 0 because U is regular.
Now: xHAx = xHUHUx = (Ux)HUx = 〈Ux|Ux〉 > 0.



Cholesky factorization
Theorem: For any positive definite matrix A there is a unique upper
triangular matrix U with positive diagonal such that A = UHU.
The matrix U is called the Cholesky factorization.

Input: A Hermitian matrix A
Output: The Cholesky factorization U if A is positive definite
for i = 1, . . . , n do

ui ,i =
√
ai ,i −

i−1∑
k=1

uk,iuk,i

if ui ,i /∈ R+ then STOP, A is not positive definite;
for j = i + 1, . . . , n do

ui ,j = 1
ui,i

(
ai ,j −

i−1∑
k=1

uk,iuk,j

)
end

end



Example — Cholesky factorization

For a Hermitian matrix A
find a triangular matrix U
satisfying: A = UHU

U
UH A

2 1 0 −1
0 1 2 3
0 0 1 1
0 0 0 3

2 0 0 0
1 1 0 0
0 2 1 0
−1 3 1 3

4 2 0 −2
2 2 2 2
0 2 5 7
−2 2 7 20

ui,i =

√
ai,i −

i−1∑
k=1

uk,i uk,i

2 1 0 −1
0 1 2 3
0 0 ? .
0 0 0 .

2 0 0 0
1 1 0 0
0 2 ? 0
−1 3 . .

4 2 0 −2
2 2 2 2
0 2 5 7
−2 2 7 20

ui,j = 1
ui,i

(
ai,j −

i−1∑
k=1

uk,i uk,j

) 2 1 0 −1
0 1 2 3
0 0 1 ?
0 0 0 .

2 0 0 0
1 1 0 0
0 2 1 0
−1 3 . .

4 2 0 −2
2 2 2 2
0 2 5 7
−2 2 7 20



Correctness of Cholesky factorization

Assume that the algorithm fails ∗
during the i-th iteration, i.e. α ≤ uHu.
We have Ã = ŨHŨ and a = ŨHu.

U Ũ

UH
ŨH

i

i

u

uH
Ã a

aH α

A0

0

*

*

Let xT = x̃T 1 0 · · · 0 where x̃ = −Ũ−1u.

Now xHAx =
= x̃HÃx̃ + x̃Ha + aH x̃ + α
= (−Ũ−1u)H(ŨHŨ)(−Ũ−1u)+

(−Ũ−1u)H(ŨHu)+(ŨHu)H(−Ũ−1u)+α
= uHu − uHu − uHu + α = α− uHu ≤ 0

Hence A is not positive definite.

x̃

x̃H

Ã a

aH α

A

x

xH 1

1

Ãx̃+ a
aH x̃+ α

0irrelevant

xHAx



A recursive condition
Theorem: A block matrix A =

α aH

a Ã
is positive definite

if and only if α > 0 and the matrix Ã− 1
αaaH is positive definite.

Observation: The Gaussian elimination of the first column by the

first row in a Hermitian matrix yields:
α aH

a Ã
∼

α aH

0 Ã− 1
αaaH

Example:
4 2 0 −1
2 2 2 2
0 2 5 7
−1 2 7 20

∼∼


4 2 0 −1
0 1 2 5

2
0 2 5 7
0 5

2 7 79
4



Proof: ⇐ Let x ∈ Cn \ 0, denote xT = x1 x̃T , x1 ∈ C, x̃ ∈ Cn−1.

xHAx = x1 x̃H ·
α aH

a Ã
·
x1

x̃
= αx1x1+x1x̃Ha+x1aH x̃+x̃HÃx̃
− 1
α x̃HaaH x̃ + 1

α x̃HaaH x̃
= x̃H(Ã− 1

αaaH)x̃ + (
√
αx1 + 1√

α
x̃Ha)(

√
αx1 + 1√

α
aH x̃)

Both summands are nonnegative: Ã− 1
αaaH is positive definite;

and the next is the standard inner product of a vector with itself.
At least one is strictly positive as otherwise x = 0. Thus xHAx > 0.

⇒ For x̃ ∈ Cn−1 \ 0 we choose x1 = − 1
αaH x̃ and xT = x1 x̃T .

By our choice:
√
αx1 + 1√

α
aH x̃ = 0.

Now 0 < xHAx = x̃H(Ã− 1
αaaH)x̃ + 0 · 0

Hence Ã− 1
αaaH is positive definite.

Also
e1HAe1 = α > 0.



A recursive condition
Theorem: A block matrix A =

α aH

a Ã
is positive definite

if and only if α > 0 and the matrix Ã− 1
αaaH is positive definite.

Corollary: Positive definite matrices can be recognized by Gaussian
elimination, but columns should be eliminated in the top to
bottom manner by subtracting appropriate multiples of the pivot
rows from the rows below, i.e. the order of the rows must not
change nor the rows can be multiplied by a scalar.
If the resulting upper triangular matrix has positive diagonal, then
the original matrix was positive definite.

Example:
4 2 0 −1
2 2 2 2
0 2 5 7
−1 2 7 20

∼∼


4 2 0 −1
0 1 2 5

2
0 2 5 7
0 5

2 7 79
4

∼∼


4 2 0 −1
0 1 2 5

2
0 0 1 2
0 0 2 27

2

∼∼


4 2 0 −1
0 1 2 5

2
0 0 1 2
0 0 0 19

2
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αaaH)x̃ + (
√
αx1 + 1√
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Sylvester condition
Theorem: A Hermitian matrix A of order n is positive definite if
and only if the matrices A1, . . . ,An have positive determinants,
where Ai uses the first i rows and columns of A.

Example:

|A| = |A4| =

∣∣∣∣∣∣∣∣∣
4 2 0 −1
2 2 2 2
0 2 5 7
−1 2 7 20

∣∣∣∣∣∣∣∣∣ = 38 > 0

|A3| =

∣∣∣∣∣∣∣
4 2 0
2 2 2
0 2 5

∣∣∣∣∣∣∣ = 4 > 0

|A2| =
∣∣∣∣∣ 4 2
2 2

∣∣∣∣∣ = 4 > 0

|A1| = det(4) = 4 > 0

All determinants are positive, thus the matrix A is positive definite.

Proof: Use Gaussian elimination A ∼ · · · ∼ A′ to test whether A is
positive definite. Let α1, . . . , αn be the elements on the diagonal of
the resulting upper triangular matrix A′.
Since we have eliminated rows in the top-to-bottom manner,
we have det(Ai) = det(A′i) =

∏
j≤i
αj = det(Ai−1)αi .

A is positive definite ⇔ α1, . . . , αn > 0
⇔ det(A1), . . . , det(An) > 0.

Example:∣∣∣∣∣∣∣∣
4 2 0 −1
2 2 2 2
0 2 5 7
−1 2 7 20

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
4 2 0 −1
0 1 2 5

2
0 2 5 7
0 5

2 7 79
4

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
4 2 0 −1
0 1 2 5

2
0 0 1 2
0 0 2 27

2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
4 2 0 −1
0 1 2 5

2
0 0 1 2
0 0 0 19

2

∣∣∣∣∣∣∣∣
A2

A1

A3

A4

A′
2

A′
1

A′
3

A′
4
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