Orthogonal projection

Definition: Let W be an inner space and V its subspace with

orthonormal basis Z = (v1,...,v,). The map pz : W — V defined
n

as pz(u) = > (u|v;)v; is the orthogonal projection of W onto V.
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Observation: Any orthogonal projection is a linear map.

Proof: .
pz(au) = E(au|v,>v, = Z a(ulvi)v; = a E<U|V/>V/ = apz(u)
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> (uviyv; + Z (wlvi)v; = pz(u) + pz(w)
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Observation: Any orthogonal projection is a linear map.

Lemma: Let pz be an orthogonal projection of W onto V/, then
u—pz(u) L v forany v, € Z.
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Projection and distance

Observation: The vector pz(u) is the vector from V = L(Z) which
is nearest to u, in the sense that it minimizes ||u — pz(u)||.

Proof: For any w € V, w # pz(u)
let a = u — pz(u),

Since b € V, we get (a|b) =

Now: ||u — w|| = ||a + b||
= /(a+ bla+b)

V/(ala) + (a|b) + (b[a) + (b|b)

\/(a|3> (b|b)

V/{ala)

all = |lu = pz(u)]]
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Corollary: The map pz is independent on the choice of the basis Z.



Approximate solution of non-solvable systems

Observation: The vector pz(u) is the vector from V = £(Z) which
is nearest to u, in the sense that it minimizes ||u — pz(u)||.

If a system Ax = b has no solution, i.e. when b ¢ C(A),
then we may project b into C(A) and get b’

The system Ax = b’ now has a solution. By the observation such
x minimizes the error ||b — b'|| = ||b — Ax]||.
This is the principle of the so called method of least squares.

Calculation options:

» Get an orthonormal basis C(A) and project b to b’, or

» Instead of Ax = b’ solve equivalent AT Ax = AT b.
Proof: b projects to b’ € C(A) <= b —b' € C(A)! = ker(AT)
e AT(b-b)=0 <= ATb=ATbH =ATAx



Gram-Schmidt orthonormalization

fori=1,....,n do
A process that transfers any i1
basis (u1, ... up) of an inner w; = uj — Z: (uilvj) v
space V to an orthonormal v 1 Wf
basis (vi,...vy): P TIwa ]



Gram-Schmidt orthonormalization — example

i-1
w; = u; — > (u;|v))v;
/1
1 .
Vi = Tw Wi
end

,,,,,,,,,,,,,,,,, (2,1,2)7
(1,1,0)7
|
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Gram-Schmidt orthonormalization — example




Gram-Schmidt orthonormalization — example

fori=1,....n do
i—1
w; = u; — 3 (uilv))v
J:
o1 .
Vi = Tw Wi
end
i=1:
0
wi = uy; — Z<Ui“0>"1—ul




Gram-Schmidt orthonormalization — example

forizl,...,nldo Wy = Vo \/U2
i

w; = u; — Y (uj|vj)v;

=

1 .

Vi = Tw Wi
end

Vi

i=2:

1>V1—(17170)T_1'(17070)T:(07170)T
= Taan W :%(010) =(0,1,0)"




Gram-Schmidt orthonormalization — example

fori=1...,n do

w3 = us — <U3‘V1>V1 — <U3|V2>V2 =
= (27 132)7— -2 (170> O)T -1 (07 170)T = (0? 07 2)T




Gram-Schmidt orthonormalization — another order




Gram-Schmidt orthonormalization — another order

u; = wp




Gram-Schmidt orthonormalization — another order

fori=1,....n do u
i-1 T R4 02
w; = u; — 3 (ui|v;)y; :
j=1 Wy = V3 .
_ 1 vy
Vi = Tl Wi S
end % i
i=2:
W = up — <U2‘V1>V1 - (17 laO)T -1 (%7 %7 %)T = (%7 %7 _%)T
_ 1 _1s1 2 2
V2 = W2 = (3,5 -3)



Gram-Schmidt orthonormalization — another order




Gram-Schmidt orthonormalization

fori=1,...,n do
A process that transfers any i1
basis (u1, ... up) of an inner Low=u;— §1<Ui|"j>"j
space V to an orthonormal 1 =
. 2. Vi = o Wi
basis (v1,...v,): [lwi|
end

Correctness:

» Due to 1. and the previous lemma: w; L v; for each j < i,
hence v; L v; whenever j # i

> Due to 2. |l = ||k ywi

» Due to the exchange lemma:
ﬁ(Vl, e, Vi, u,-) = /:,(Vl7 ey Vi, W,') = £(v1, ceey V,')

Consequence: Let V be a subspace of an inner space W. Then any
orthonormal basis of V' has an orthonormal extension to W.



Linear maps that preserve the inner product

Definition: A linear map f between inner spaces V and W is
isometry if it preserves the inner product, i.e.

(ulw) = (f(u)|f(w)).

Example: The identity preserves the inner product.
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Linear maps that preserve the inner product

Definition: A linear map f between inner spaces V and W is
isometry if it preserves the inner product, i.e.

(ulw) = (f(u)|f(w)).

Example: Axis symmetry preserves the inner product.

e?A




Linear maps that preserve the inner product

Definition: A linear map f between inner spaces V and W is
isometry if it preserves the inner product, i.e.

(ulw) = (f(u)|f(w)).
Theorem: A linear map between inner spaces V and W is isometry
if and only if it preserves the associated norm, i.e. ||u|| = ||f(u)]|.

Proof: As the norm depends on the inner product, = follows.

< compare:
HU+H3WH2 = Htﬁll2 +  alwluy) +  a(ulw) + 35H”WH2
u)) +a(f(u)|f(w)) + aa||f(w)|]?

(w)[f(u)) + (f(u)|f(w))
(w)[f(u)) = (F(u)|f(w))

for a=1 we get: (w|u) + (u
for a =i we get: (w|u) — (u

= (ulw) = (f(u)[f(w))

[ (u+ aw)| 2 =[|F(u)[[* + a{f (w)](
|w) = (f
w) = (f



Matrix characterization

of bijective isometries

Theorem: Let V and W be inner spaces of finite dimension and let
X and Y be their orthonormal bases.
A linear map f : V — W is a bijective isometry iff [f]xy is unitary.

Example:
T
N e2h X' = (%7 ?)
\‘\,‘\ Ny 7@
AN [flx .k = < ;
™ -5
2 _ V31 N
@=(2£3) N R 1
. - V3
K \\ f/\ 1 0 5
& N )
N = [flkklid]x,k
<-" N

Observe that the product

of unitarv matrices is unitaryv.



Matrix characterization of bijective isometries

Theorem: Let V and W be inner spaces of finite dimension and let
X and Y be their orthonormal bases.
A linear map f : V — W is a bijective isometry iff [f]xy is unitary.

Proof: Linear bijective implies equal dimensions and vice versa.
Since X is orthonormal: (u|w) = [w]¥[u]x
Since Y is orthonormal: (f(u)|f(w)) = [f(w)]4[f(u)]y

= [WIX[F1%y [Flxy [ulx

Note that the matrix identity x”y = x Ay holds for all suitable
vectors x and y only if A is the identity matrix.

In our case, f is isometry

iff [w]R[u]x = [w]R[F1% [flxy[u]x holds for all u and w,
which holds if and only if [f]§\ [f]xy = 1,

i.e. when [f]xy is unitary.



Orthogonal complement

Definition: Let V be a subset of an inner space W. The orthogonal
complement of V istheset V* ={uc W :¥Yve V :ul v}

Example:

vV=ut

W =R3
Observation: If U C V then UL D V+.

Proof: VI ={ue W:VveV:ulv}
ClueW:WweU:ulv}=Ut



Orthogonal complement

Definition: Let V be a subset of an inner space W. The orthogonal
complement of V istheset V* ={uc W :¥Yve V :ul v}

Example:

vV=ut

W =R3
Observation: If U C V then UL D V+.
Observation: Each orthogonal complement is a subspace of W.

Proof: u L v = (au|v) = a(u|v) =0 = (au) L v
uwlv= (ut+wlv)=(ulv)+(wlv)=0= (u+w) L v



Orthogonal complement

Definition: Let V be a subset of an inner space W. The orthogonal
complement of V istheset V* ={uc W :¥Yve V :ul v}

Example:

vV=ut

W =R3

Observation: If U C V then U+ D VL.

Observation: Each orthogonal complement is a subspace of W.
Observation: For any V C W : V N V+ = {0}

Proof: If u € VN V= then (u|u) =0, hence u = 0.



For spaces determined by a matrix: Ker(A) = (R(A))*

1 3 4 5 1 3 4 5
For areal matrix A=|2 6 3 0| ~---~|0 0O 1 -2
3 9 15 9 0 00 O

Hence R(A) = £{(1,3,4,5)7,(0,0,1,-2)T} = £{x}, x?},

and also Ker(A) = £{(—13,0,2,1)7,(-3,1,0,0)7} = £{y*, y?}.
Prposition: For A € R™*" any u € R(A) and v € Ker(A) satisfy
u L v with respect to the standard inner product.

Example:
u=x'—2x>=(1,3,4,5)7 —2(0,0,1,-2)" =(1,3,2,9)7
v=y!'+3y>=(-13,0,2,1)7 +3(-3,1,0,0)" = (-22,3,2,1)"
(ulv) =1-(-22)+3-34+2-2+9-1=0
(ulv) = (x! —2x?|y! 4 3y?) =

= (x'|y!) + 3(x!|y?) — 2(x?|y!) — 6(x*|y*) =0



For spaces determined by a matrix: Ker(A) = (R(A))*

1 3 4 5 1 3 4 5
For areal matrix A=|2 6 3 0| ~---~|0 0O 1 -2
3 9 15 9 0 00 O

Hence R(A) = £{(1,3,4,5)7,(0,0,1,-2)T} = £{x}, x?},

and also Ker(A) = £{(—13,0,2,1)7,(-3,1,0,0)7} = £{y*, y?}.
Prposition: For A € R™*" any u € R(A) and v € Ker(A) satisfy
u L v with respect to the standard inner product.

Proof: Denote by x!,...,x" a basis of R(A), and similarly by
yl,...,y"™ " a basis of Ker(A), where r = rank(A).

r i n—r i
Then u= ) aix" and v = }_ b;y/ satisfy
i=1 j=1

1=

(ulv) = < > aixi| Y bjyj> = > > aibi{xily;) = 0.
i=1 j=1 i=1j=1



Properties of the orthogonal complement

Theorem: Each finitely generated inner space W and its subspace
V satisfy: (V1) = V and also dim(V) + dim(V+) = dim(W).




Properties of the orthogonal complement

Theorem: Each finitely generated inner space W and its subspace
V satisfy: (V1) = V and also dim(V) + dim(V+) = dim(W).

Proof: Choose an orthonormal basis X of V and extend it to an
orthonormal basis Z of W.
Denote Y =Z\ X, X =(x1,...,%k), Y = (¥1,.--, Y1)

Any ue L(X)=V and v € E(Y) are orthogonal:

(u|v) :<Zla,-x,- zlbjyj> z z aibj(xily;) = 0
i= j=

as Z is an orthonormal basis. Hence L(Y)C VvVt

Now choose an w € V* and consider [w]z. Since Z is
orthonormal, the coefficients of w w.r.t. Z are the Fourier
coefficients given by the inner product of w and the elements of Z.
Since w € V', we have (w|x;) = 0 for each x; € X, hence

w e L(Y), ie. VI CL(Y), and thus V+ = L(Y).

Now: dim( )—l—dlm(VL) (X|+1Y]| = 1Z| = dim(W)

and also: (V1)t =L£(Z\Y)=L(X)=V.




