Orthogonal projection

Example:

Definition: Let W be an inner space and V its *subspace* with orthonormal basis $Z = (\mathbf{v}_1, \dots, \mathbf{v}_n)$. The map $p_Z : W \to V$ defined as $p_Z(\mathbf{u}) = \sum_{i=1}^n \langle \mathbf{u} | \mathbf{v}_i \rangle \mathbf{v}_i$ is the *orthogonal projection* of W onto V.

Observation: Any orthogonal projection is a linear map.

Proof:

$$p_{Z}(a\mathbf{u}) = \sum_{i=1}^{n} \langle a\mathbf{u} | \mathbf{v}_{i} \rangle \mathbf{v}_{i} = \sum_{i=1}^{n} a \langle \mathbf{u} | \mathbf{v}_{i} \rangle \mathbf{v}_{i} = a \sum_{i=1}^{n} \langle \mathbf{u} | \mathbf{v}_{i} \rangle \mathbf{v}_{i} = ap_{Z}(\mathbf{u})$$

$$p_{Z}(\mathbf{u} + \mathbf{w}) = \sum_{i=1}^{n} \langle \mathbf{u} + \mathbf{w} | \mathbf{v}_{i} \rangle \mathbf{v}_{i} = \sum_{i=1}^{n} \langle \mathbf{u} | \mathbf{v}_{i} \rangle + \langle \mathbf{w} | \mathbf{v}_{i} \rangle \mathbf{v}_{i} = ap_{Z}(\mathbf{u})$$

$$p_{Z}(\mathbf{u}+\mathbf{w}) = \sum_{i=1}^{n} \langle \mathbf{u}+\mathbf{w}|\mathbf{v}_{i}\rangle \mathbf{v}_{i} = \sum_{i=1}^{n} (\langle \mathbf{u}|\mathbf{v}_{i}\rangle + \langle \mathbf{w}|\mathbf{v}_{i}\rangle) \mathbf{v}_{i} =$$

$$\sum_{i=1}^{n} \langle \boldsymbol{u} | \boldsymbol{v}_i \rangle \boldsymbol{v}_i + \sum_{i=1}^{n} \langle \boldsymbol{w} | \boldsymbol{v}_i \rangle \boldsymbol{v}_i = p_Z(\boldsymbol{u}) + p_Z(\boldsymbol{w})$$

$$\sum\limits_{i=1}^{m}\langle oldsymbol{u}|oldsymbol{v}_i
angleoldsymbol{v}_i+\sum\limits_{i=1}^{m}\langle oldsymbol{w}|oldsymbol{v}_i
angleoldsymbol{v}_i=
ho_Z(oldsymbol{u})+
ho_Z(oldsymbol{w})$$

Observation: Any orthogonal projection is a linear map.

Lemma: Let p_Z be an orthogonal projection of W onto V, then $\mathbf{u} - p_Z(\mathbf{u}) \perp \mathbf{v}_i$ for any $\mathbf{v}_i \in Z$.

Projection and distance

Observation: The vector $p_Z(\mathbf{u})$ is the vector from $V = \mathcal{L}(Z)$ which is nearest to u, in the sense that it minimizes $||\mathbf{u} - p_Z(\mathbf{u})||$.

a + b

Proof: For any
$$\mathbf{w} \in V$$
, $\mathbf{w} \neq p_Z(\mathbf{u})$
let $\mathbf{a} = \mathbf{u} - p_Z(\mathbf{u})$, $\mathbf{w} = p_Z(\mathbf{u}) + p_Z(\mathbf{u})$
 $\mathbf{b} = p_Z(\mathbf{u}) - \mathbf{w} \neq 0$.
Since $\mathbf{b} \in V$, we get $\langle \mathbf{a} | \mathbf{b} \rangle = 0$.
Now: $||\mathbf{u} - \mathbf{w}|| = ||\mathbf{a} + \mathbf{b}||$
 $= \sqrt{\langle \mathbf{a} + \mathbf{b} | \mathbf{a} + \mathbf{b} \rangle}$
 $= \sqrt{\langle \mathbf{a} | \mathbf{a} \rangle + \langle \mathbf{a} | \mathbf{b} \rangle + \langle \mathbf{b} | \mathbf{a} \rangle} + \langle \mathbf{b} | \mathbf{b} \rangle}$

$$= \sqrt{\langle \mathbf{a} + \mathbf{b} | \mathbf{a} + \mathbf{b} \rangle}$$

$$= \sqrt{\langle \mathbf{a} | \mathbf{a} \rangle + \langle \mathbf{a} | \mathbf{b} \rangle + \langle \mathbf{b} | \mathbf{a} \rangle + \langle \mathbf{b} | \mathbf{b} \rangle}$$

$$= \sqrt{\langle \mathbf{a} | \mathbf{a} \rangle + \langle \mathbf{b} | \mathbf{b} \rangle}$$

$$> \sqrt{\langle \mathbf{a} | \mathbf{a} \rangle}$$

$$= ||\mathbf{a}|| = ||\mathbf{u} - p_{Z}(\mathbf{u})||$$

Corollary: The map p_Z is independent on the choice of the basis Z.

Approximate solution of non-solvable systems

Observation: The vector $p_Z(\mathbf{u})$ is the vector from $V = \mathcal{L}(Z)$ which is nearest to \mathbf{u} , in the sense that it minimizes $||\mathbf{u} - p_Z(\mathbf{u})||$.

If a system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has no solution, i.e. when $\mathbf{b} \notin \mathcal{C}(\mathbf{A})$, then we may project \mathbf{b} into $\mathcal{C}(\mathbf{A})$ and get \mathbf{b}' .

The system $\mathbf{A}\mathbf{x} = \mathbf{b}'$ now has a solution. By the observation such \mathbf{x} minimizes the error $||\mathbf{b} - \mathbf{b}'|| = ||\mathbf{b} - \mathbf{A}\mathbf{x}||$.

This is the principle of the so called *method of least squares*.

Calculation options:

- ▶ Get an orthonormal basis C(A) and project **b** to **b**', or
- ▶ Instead of $\mathbf{A}\mathbf{x} = \mathbf{b}'$ solve equivalent $\mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$.

Proof:
$$\boldsymbol{b}$$
 projects to $\boldsymbol{b}' \in \mathcal{C}(\boldsymbol{A}) \iff \boldsymbol{b} - \boldsymbol{b}' \in \mathcal{C}(\boldsymbol{A})^{\perp} = \ker(\boldsymbol{A}^{T})$
 $\iff \boldsymbol{A}^{T}(\boldsymbol{b} - \boldsymbol{b}') = 0 \iff \boldsymbol{A}^{T}\boldsymbol{b} = \boldsymbol{A}^{T}\boldsymbol{b}' = \boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x}$

Gram-Schmidt orthonormalization

A process that transfers any basis $(\boldsymbol{u}_1, \dots \boldsymbol{u}_n)$ of an inner space V to an orthonormal basis $(\boldsymbol{v}_1, \dots \boldsymbol{v}_n)$:

$$\begin{array}{c|c} \textbf{for } i=1,\ldots,n \ \textbf{do} \\ & \pmb{w}_i=\pmb{u}_i-\sum\limits_{j=1}^{i-1}\langle \pmb{u}_i|\pmb{v}_j\rangle\pmb{v}_j \\ & \pmb{v}_i=\frac{1}{||\pmb{w}_i||}\pmb{w}_i \end{array}$$

$$\begin{array}{l} \text{for } i=1,\ldots,n \text{ do} \\ & | \quad \textbf{\textit{w}}_i = \textbf{\textit{u}}_i - \sum\limits_{j=1}^{i-1} \langle \textbf{\textit{u}}_i | \textbf{\textit{v}}_j \rangle \textbf{\textit{v}}_j \\ & | \quad \textbf{\textit{v}}_i = \frac{1}{||\textbf{\textit{w}}_i||} \textbf{\textit{w}}_i \\ & \text{end} \end{array}$$

$$\begin{array}{c|c} \textbf{for } i=1,\ldots, n & \textbf{do} \\ & \boldsymbol{w}_i = \boldsymbol{u}_i - \sum\limits_{j=1}^{i-1} \langle \boldsymbol{u}_i | \boldsymbol{v}_j \rangle \boldsymbol{v}_j \\ & \boldsymbol{v}_i = \frac{1}{||\boldsymbol{w}_i||} \boldsymbol{w}_i \\ & \textbf{end} \end{array}$$

for
$$i=1,\ldots,n$$
 do $|m{w}_i=m{u}_i-\sum\limits_{j=1}^{i-1}\langle m{u}_i|m{v}_j
anglem{v}_j \ m{v}_i=rac{1}{||m{w}_i||}m{w}_i$ end

$$T = 1$$
:
 $\mathbf{w}_1 = \mathbf{u}_1 - \sum_{j=1}^{0} \langle \mathbf{u}_i | \mathbf{v}_j \rangle \mathbf{v}_j = \mathbf{u}_1 = (1, 0, 0)^T$
 $\mathbf{v}_1 = \frac{1}{||\mathbf{w}_1||} \mathbf{w}_1 = \frac{1}{1} (1, 0, 0)^T = (1, 0, 0)^T$

$$\mathbf{w}_2 = \mathbf{u}_2 - \langle \mathbf{u}_2 | \mathbf{v}_1 \rangle \mathbf{v}_1 = (1, 1, 0)^T - 1 \cdot (1, 0, 0)^T = (0, 1, 0)^T$$

 $\mathbf{v}_2 = \frac{1}{||\mathbf{w}_2||} \mathbf{w}_2 = \frac{1}{1} (0, 1, 0)^T = (0, 1, 0)^T$

for
$$i=1,\ldots,n$$
 do $\mathbf{w}_i=\mathbf{u}_i-\sum\limits_{j=1}^{i-1}\langle\mathbf{u}_i|\mathbf{v}_j\rangle\mathbf{v}_j$ $\mathbf{v}_i=\frac{1}{||\mathbf{w}_i||}\mathbf{w}_i$ end

$$\mathbf{w}_3 = \mathbf{u}_3 - \langle \mathbf{u}_3 | \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_3 | \mathbf{v}_2 \rangle \mathbf{v}_2 = = (2, 1, 2)^T - 2 \cdot (1, 0, 0)^T - 1 \cdot (0, 1, 0)^T = (0, 0, 2)^T \mathbf{v}_3 = \frac{1}{||\mathbf{w}_3||} \mathbf{w}_3 = \frac{1}{2} (0, 0, 2)^T = (0, 0, 1)^T$$

$$\begin{array}{l} \text{for } i=1,\ldots,n \text{ do} \\ & | \quad \textbf{\textit{w}}_i = \textbf{\textit{u}}_i - \sum\limits_{j=1}^{i-1} \langle \textbf{\textit{u}}_i | \textbf{\textit{v}}_j \rangle \textbf{\textit{v}}_j \\ & | \quad \textbf{\textit{v}}_i = \frac{1}{||\textbf{\textit{w}}_i||} \textbf{\textit{w}}_i \\ & \text{end} \end{array}$$

$$\begin{array}{c|c} \textbf{for} \ i=1,\ldots,n \ \textbf{do} \\ & \boldsymbol{w}_i=\boldsymbol{u}_i-\sum\limits_{j=1}^{i-1}\langle \boldsymbol{u}_i|\boldsymbol{v}_j\rangle\boldsymbol{v}_j \\ & \boldsymbol{v}_i=\frac{1}{||\boldsymbol{w}_i||}\boldsymbol{w}_i \end{array}$$

$$i = 1$$
:
 $\mathbf{w}_1 = \mathbf{u}_1 = (2, 1, 2)^T$
 $\mathbf{v}_1 = \frac{1}{||\mathbf{w}_1||} \mathbf{w}_1 = \frac{1}{3} (2, 1, 2)^T = (\frac{2}{3}, \frac{1}{3}, \frac{2}{3})^T$

for
$$i=1,\ldots,n$$
 do $|m{w}_i=m{u}_i-\sum\limits_{j=1}^{i-1}\langle m{u}_i|m{v}_j
anglem{v}_j \ m{v}_i=rac{1}{||m{w}_i||}m{w}_i$ end

$$\mathbf{w}_2 = \mathbf{v}_2$$

i = 2:

$$\mathbf{w}_2 = \mathbf{u}_2 - \langle \mathbf{u}_2 | \mathbf{v}_1 \rangle \mathbf{v}_1 = (1, 1, 0)^T - 1 \cdot (\frac{2}{3}, \frac{1}{3}, \frac{2}{3})^T = (\frac{1}{3}, \frac{2}{3}, -\frac{2}{3})^T$$

 $\mathbf{v}_2 = \frac{1}{||\mathbf{w}_2||} \mathbf{w}_2 = \frac{1}{1} (\frac{1}{3}, \frac{2}{3}, -\frac{2}{3})^T$

$$\begin{array}{c|c} \textbf{for } i=1,\ldots,n & \textbf{do} \\ & \textbf{\textit{w}}_i = \textbf{\textit{u}}_i - \sum\limits_{j=1}^{i-1} \langle \textbf{\textit{u}}_i | \textbf{\textit{v}}_j \rangle \textbf{\textit{v}}_j \\ & \textbf{\textit{v}}_i = \frac{1}{||\textbf{\textit{w}}_i||} \textbf{\textit{w}}_i \\ & \textbf{end} \end{array}$$

$$\begin{split} & \textit{i} = 3: \\ & \textit{w}_3 = \textit{u}_3 - \langle \textit{u}_3 | \textit{v}_1 \rangle \textit{v}_1 - \langle \textit{u}_3 | \textit{v}_2 \rangle \textit{v}_2 = \\ & = (1,0,0)^T - \frac{2}{3} \cdot (\frac{2}{3},\frac{1}{3},\frac{2}{3})^T - \frac{1}{3} \cdot (\frac{1}{3},\frac{2}{3},-\frac{2}{3})^T = (\frac{4}{9},-\frac{4}{9},-\frac{2}{9})^T \\ & \textit{v}_3 = \frac{1}{||\textit{w}_3||} \textit{w}_3 = \frac{1}{2/3} (\frac{4}{9},-\frac{4}{9},-\frac{2}{9})^T = (\frac{2}{3},-\frac{2}{3},-\frac{1}{3})^T \end{aligned}$$

Gram-Schmidt orthonormalization

A process that transfers any basis $(\boldsymbol{u}_1, \dots \boldsymbol{u}_n)$ of an inner space V to an orthonormal basis $(\boldsymbol{v}_1, \dots \boldsymbol{v}_n)$:

$$\begin{array}{c|c} \textbf{for} \ i=1,\ldots,n & \textbf{do} \\ \hline & \textbf{1.} \ \textbf{\textit{w}}_i = \textbf{\textit{u}}_i - \sum\limits_{j=1}^{i-1} \langle \textbf{\textit{u}}_i | \textbf{\textit{v}}_j \rangle \textbf{\textit{v}}_j \\ & \textbf{2.} \ \textbf{\textit{v}}_i = \frac{1}{||\textbf{\textit{w}}_i||} \textbf{\textit{w}}_i \\ \\ \textbf{end} \end{array}$$

Correctness:

- ▶ Due to 1. and the previous lemma: $\mathbf{w}_i \perp \mathbf{v}_j$ for each j < i, hence $\mathbf{v}_i \perp \mathbf{v}_j$ whenever $j \neq i$
- ▶ Due to 2.: $||\mathbf{v}_i|| = \left| \left| \frac{1}{||\mathbf{w}_i||} \mathbf{w}_i \right| \right| = \frac{||\mathbf{w}_i||}{||\mathbf{w}_i||} = 1$.
- Due to the exchange lemma:

$$\mathcal{L}(\textbf{v}_1,\ldots,\textbf{v}_{i-1},\textbf{u}_i) = \mathcal{L}(\textbf{v}_1,\ldots,\textbf{v}_{i-1},\textbf{w}_i) = \mathcal{L}(\textbf{v}_1,\ldots,\textbf{v}_i)$$

Consequence: Let V be a subspace of an inner space W. Then any orthonormal basis of V has an orthonormal extension to W.

Linear maps that preserve the inner product

Definition: A linear map f between inner spaces V and W is isometry if it preserves the inner product, i.e.

$$\langle \mathbf{u} | \mathbf{w} \rangle = \langle f(\mathbf{u}) | f(\mathbf{w}) \rangle.$$

Example: The identity preserves the inner product.

Linear maps that preserve the inner product

Definition: A linear map f between inner spaces V and W is isometry if it preserves the inner product, i.e.

$$\langle \mathbf{u} | \mathbf{w} \rangle = \langle f(\mathbf{u}) | f(\mathbf{w}) \rangle.$$

Example: Axis symmetry preserves the inner product.

Linear maps that preserve the inner product

Definition: A linear map f between inner spaces V and W is isometry if it preserves the inner product, i.e.

$$\langle \mathbf{u} | \mathbf{w} \rangle = \langle f(\mathbf{u}) | f(\mathbf{w}) \rangle.$$

Theorem: A linear map between inner spaces V and W is isometry if and only if it preserves the associated norm, i.e. $||\mathbf{u}|| = ||f(\mathbf{u})||$.

Proof: As the norm depends on the inner product, \Rightarrow follows.

 $\begin{array}{l} \Leftarrow \text{ compare:} \\ || \textbf{\textit{u}} + a \textbf{\textit{w}} ||^2 &= || \textbf{\textit{u}} ||^2 + a \langle \textbf{\textit{w}} | \textbf{\textit{u}} \rangle + \overline{a} \langle \textbf{\textit{u}} | \textbf{\textit{w}} \rangle + a \overline{a} || \textbf{\textit{w}} ||^2 \\ || &| || f(\textbf{\textit{u}} + a \textbf{\textit{w}}) ||^2 = || f(\textbf{\textit{u}}) ||^2 + a \langle f(\textbf{\textit{w}}) | f(\textbf{\textit{u}}) \rangle + \overline{a} \langle f(\textbf{\textit{u}}) | f(\textbf{\textit{w}}) \rangle + a \overline{a} || f(\textbf{\textit{w}}) ||^2 \\ \text{for } a = 1 \text{ we get: } \langle \textbf{\textit{w}} | \textbf{\textit{u}} \rangle + \langle \textbf{\textit{u}} | \textbf{\textit{w}} \rangle = \langle f(\textbf{\textit{w}}) | f(\textbf{\textit{u}}) \rangle + \langle f(\textbf{\textit{u}}) | f(\textbf{\textit{w}}) \rangle \\ \text{for } a = i \text{ we get: } \langle \textbf{\textit{w}} | \textbf{\textit{u}} \rangle - \langle \textbf{\textit{u}} | \textbf{\textit{w}} \rangle = \langle f(\textbf{\textit{w}}) | f(\textbf{\textit{u}}) \rangle - \langle f(\textbf{\textit{u}}) | f(\textbf{\textit{w}}) \rangle \\ \Rightarrow \langle \textbf{\textit{u}} | \textbf{\textit{w}} \rangle = \langle f(\textbf{\textit{u}}) | f(\textbf{\textit{w}}) \rangle \end{aligned}$

Matrix characterization of bijective isometries

Theorem: Let V and W be inner spaces of finite dimension and let X and Y be their orthonormal bases.

A linear map $f: V \to W$ is a bijective isometry iff $[f]_{XY}$ is unitary.

Observe that the product of unitary matrices is unitary.

Matrix characterization of bijective isometries

Theorem: Let V and W be inner spaces of finite dimension and let X and Y be their orthonormal bases.

A linear map $f: V \to W$ is a bijective isometry iff $[f]_{XY}$ is unitary.

Proof: Linear bijective implies equal dimensions and vice versa.

Since X is orthonormal: $\langle \boldsymbol{u} | \boldsymbol{w} \rangle = [\boldsymbol{w}]_X^H [\boldsymbol{u}]_X$

Since Y is orthonormal:
$$\langle f(\mathbf{u})|f(\mathbf{w})\rangle = [f(\mathbf{w})]_Y^H [f(\mathbf{u})]_Y$$

= $[\mathbf{w}]_X^H [f]_{XY}^H [f]_{XY} [\mathbf{u}]_X$

Note that the matrix identity $\mathbf{x}^T \mathbf{y} = \mathbf{x}^T \mathbf{A} \mathbf{y}$ holds for all suitable vectors \mathbf{x} and \mathbf{y} only if \mathbf{A} is the identity matrix.

In our case, f is isometry iff $[\boldsymbol{w}]_X^H[\boldsymbol{u}]_X = [\boldsymbol{w}]_X^H[f]_{XY}^H[f]_{XY}[\boldsymbol{u}]_X$ holds for all \boldsymbol{u} and \boldsymbol{w} , which holds if and only if $[f]_{XY}^H[f]_{XY} = \boldsymbol{l}$, i.e. when $[f]_{XY}$ is unitary.

Orthogonal complement

Definition: Let V be a subset of an inner space W. The *orthogonal* complement of V is the set $V^{\perp} = \{ \mathbf{u} \in W : \forall \mathbf{v} \in V : \mathbf{u} \perp \mathbf{v} \}$.

Example:

Observation: If $U \subseteq V$ then $U^{\perp} \supseteq V^{\perp}$.

Proof:
$$V^{\perp} = \{ \boldsymbol{u} \in W : \forall \boldsymbol{v} \in V : \boldsymbol{u} \perp \boldsymbol{v} \}$$

 $\subseteq \{ \boldsymbol{u} \in W : \forall \boldsymbol{v} \in U : \boldsymbol{u} \perp \boldsymbol{v} \} = U^{\perp}$

Orthogonal complement

Definition: Let V be a subset of an inner space W. The *orthogonal* complement of V is the set $V^{\perp} = \{ \mathbf{u} \in W : \forall \mathbf{v} \in V : \mathbf{u} \perp \mathbf{v} \}$.

Example:

Observation: If $U \subseteq V$ then $U^{\perp} \supseteq V^{\perp}$.

Observation: Each orthogonal complement is a subspace of W.

Proof:
$$\mathbf{u} \perp \mathbf{v} \Longrightarrow \langle a\mathbf{u} | \mathbf{v} \rangle = a \langle \mathbf{u} | \mathbf{v} \rangle = 0 \Longrightarrow (a\mathbf{u}) \perp \mathbf{v}$$

 $\mathbf{u}, \mathbf{w} \perp \mathbf{v} \Longrightarrow \langle \mathbf{u} + \mathbf{w} | \mathbf{v} \rangle = \langle \mathbf{u} | \mathbf{v} \rangle + \langle \mathbf{w} | \mathbf{v} \rangle = 0 \Longrightarrow (\mathbf{u} + \mathbf{w}) \perp \mathbf{v}$

Orthogonal complement

Definition: Let V be a subset of an inner space W. The *orthogonal* complement of V is the set $V^{\perp} = \{ \mathbf{u} \in W : \forall \mathbf{v} \in V : \mathbf{u} \perp \mathbf{v} \}$.

Example:

Observation: If $U \subseteq V$ then $U^{\perp} \supseteq V^{\perp}$.

Observation: Each orthogonal complement is a subspace of W.

Observation: For any $V \subseteq W : V \cap V^{\perp} = \{0\}$

Proof: If $\mathbf{u} \in V \cap V^{\perp}$ then $\langle \mathbf{u} | \mathbf{u} \rangle = 0$, hence $\mathbf{u} = \mathbf{0}$.

For spaces determined by a matrix: $Ker(\mathbf{A}) = (\mathcal{R}(\mathbf{A}))^{\perp}$

For a real matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 2 & 6 & 3 & 0 \\ 3 & 9 & 15 & 9 \end{pmatrix} \sim \dots \sim \begin{pmatrix} 1 & 3 & 4 & 5 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Hence $\mathcal{R}(\mathbf{A}) = \mathcal{L}\{(1,3,4,5)^T, (0,0,1,-2)^T\} = \mathcal{L}\{\mathbf{x}^1,\mathbf{x}^2\},$ and also $\text{Ker}(\mathbf{A}) = \mathcal{L}\{(-13,0,2,1)^T, (-3,1,0,0)^T\} = \mathcal{L}\{\mathbf{y}^1,\mathbf{y}^2\}.$

Prposition: For $\mathbf{A} \in \mathbb{R}^{m \times n}$ any $\mathbf{u} \in \mathcal{R}(\mathbf{A})$ and $\mathbf{v} \in \text{Ker}(\mathbf{A})$ satisfy $\mathbf{u} \perp \mathbf{v}$ with respect to the standard inner product.

Example:

$$\mathbf{u} = \mathbf{x}^{1} - 2\mathbf{x}^{2} = (1, 3, 4, 5)^{T} - 2(0, 0, 1, -2)^{T} = (1, 3, 2, 9)^{T}
\mathbf{v} = \mathbf{y}^{1} + 3\mathbf{y}^{2} = (-13, 0, 2, 1)^{T} + 3(-3, 1, 0, 0)^{T} = (-22, 3, 2, 1)^{T}
\langle \mathbf{u} | \mathbf{v} \rangle = 1 \cdot (-22) + 3 \cdot 3 + 2 \cdot 2 + 9 \cdot 1 = 0
\langle \mathbf{u} | \mathbf{v} \rangle = \langle \mathbf{x}^{1} - 2\mathbf{x}^{2} | \mathbf{y}^{1} + 3\mathbf{y}^{2} \rangle =
= \langle \mathbf{x}^{1} | \mathbf{y}^{1} \rangle + 3\langle \mathbf{x}^{1} | \mathbf{y}^{2} \rangle - 2\langle \mathbf{x}^{2} | \mathbf{y}^{1} \rangle - 6\langle \mathbf{x}^{2} | \mathbf{y}^{2} \rangle = 0$$

For spaces determined by a matrix: $Ker(\mathbf{A}) = (\mathcal{R}(\mathbf{A}))^{\perp}$

For a real matrix
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 4 & 5 \\ 2 & 6 & 3 & 0 \\ 3 & 9 & 15 & 9 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 3 & 4 & 5 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Hence
$$\mathcal{R}(\mathbf{A}) = \mathcal{L}\{(1,3,4,5)^T, (0,0,1,-2)^T\} = \mathcal{L}\{\mathbf{x}^1,\mathbf{x}^2\},$$
 and also $\text{Ker}(\mathbf{A}) = \mathcal{L}\{(-13,0,2,1)^T, (-3,1,0,0)^T\} = \mathcal{L}\{\mathbf{y}^1,\mathbf{y}^2\}.$

Prposition: For $\mathbf{A} \in \mathbb{R}^{m \times n}$ any $\mathbf{u} \in \mathcal{R}(\mathbf{A})$ and $\mathbf{v} \in \text{Ker}(\mathbf{A})$ satisfy $\mathbf{u} \perp \mathbf{v}$ with respect to the standard inner product.

Proof: Denote by x^1, \ldots, x^r a basis of $\mathcal{R}(\mathbf{A})$, and similarly by y^1, \ldots, y^{n-r} a basis of $\mathrm{Ker}(\mathbf{A})$, where $r = \mathrm{rank}(\mathbf{A})$.

Then
$${m u}=\sum\limits_{i=1}^r a_i{m x}^i$$
 and ${m v}=\sum\limits_{j=1}^{n-r} b_j{m y}^j$ satisfy

$$\langle \boldsymbol{u} | \boldsymbol{v} \rangle = \left\langle \sum_{i=1}^{r} a_i \boldsymbol{x}_i \middle| \sum_{i=1}^{n-r} b_j \boldsymbol{y}_j \right\rangle = \sum_{i=1}^{r} \sum_{j=1}^{n-r} a_i b_j \langle \boldsymbol{x}_i | \boldsymbol{y}_j \rangle = 0.$$

Properties of the orthogonal complement

Theorem: Each finitely generated inner space W and its subspace V satisfy: $(V^{\perp})^{\perp} = V$ and also $\dim(V) + \dim(V^{\perp}) = \dim(W)$.

Properties of the orthogonal complement

Theorem: Each finitely generated inner space W and its subspace V satisfy: $(V^{\perp})^{\perp} = V$ and also $\dim(V) + \dim(V^{\perp}) = \dim(W)$.

Proof: Choose an orthonormal basis X of V and extend it to an orthonormal basis Z of W.

Denote
$$Y = Z \setminus X$$
, $X = (\mathbf{x}_1, \dots, \mathbf{x}_k)$, $Y = (\mathbf{y}_1, \dots, \mathbf{y}_l)$.

Any $\mathbf{u} \in \mathcal{L}(X) = V$ and $\mathbf{v} \in \mathcal{L}(Y)$ are orthogonal:

$$\langle \boldsymbol{u} | \boldsymbol{v} \rangle = \Big\langle \sum_{i=1}^n a_i \boldsymbol{x}_i \Big| \sum_{j=1}^n b_j \boldsymbol{y}_j \Big\rangle = \sum_{i=1}^n \sum_{j=1}^n a_i \overline{b_j} \langle \boldsymbol{x}_i | \boldsymbol{y}_j \rangle = 0$$
 as Z is an orthonormal basis. Hence $\mathcal{L}(Y) \subseteq V^{\perp}$.

Now choose an $\mathbf{w} \in V^{\perp}$ and consider $[\mathbf{w}]_Z$. Since Z is orthonormal, the coefficients of \mathbf{w} w.r.t. Z are the Fourier coefficients given by the inner product of \mathbf{w} and the elements of Z. Since $\mathbf{w} \in V^{\perp}$, we have $\langle \mathbf{w} | \mathbf{x}_i \rangle = 0$ for each $\mathbf{x}_i \in X$, hence

$$\mathbf{w} \in \mathcal{L}(Y)$$
, i.e. $V^{\perp} \subseteq \mathcal{L}(Y)$, and thus $V^{\perp} = \mathcal{L}(Y)$.
Now: $\dim(V) + \dim(V^{\perp}) = |X| + |Y| = |Z| = \dim(W)$

Now: $\dim(V) + \dim(V^{\perp}) = |X| + |Y| = |Z| = \dim(W)$ and also: $(V^{\perp})^{\perp} = \mathcal{L}(Z \setminus Y) = \mathcal{L}(X) = V$.