Inner product

Definition: An *inner product* on a vector space V over $\mathbb C$ is a map, that assigns each pair of vectors $\mathbf u, \mathbf v \in V$ a scalar $\langle \mathbf u | \mathbf v \rangle \in \mathbb C$, and that satisfies the following axioms:

- $\forall u \in V : \langle u | u \rangle \in \mathbb{R}_0^+$
- $\forall u \in V : \langle u | u \rangle = 0 \iff u = 0$
- $ightharpoonup \forall u, v \in V : \langle v | u \rangle = \overline{\langle u | v \rangle}$
- $\forall u, v, w \in V : \langle u + v | w \rangle = \langle u | w \rangle + \langle v | w \rangle$
- $\forall u \in V, \forall a \in \mathbb{C} : \langle au | v \rangle = a \langle u | v \rangle$

(Formally, each inner product is a map $\langle \bullet | \bullet \rangle : V \times V \to \mathbb{C}$.)

A vector space together with its inner product is called *inner space*.

Observation: When extracting from the second argument we get complex conjugate: $\langle \boldsymbol{u} | a \boldsymbol{v} \rangle = \overline{\langle a \boldsymbol{v} | \boldsymbol{u} \rangle} = \overline{a \langle \boldsymbol{v} | \boldsymbol{u} \rangle} = \overline{a} \overline{\langle \boldsymbol{v} | \boldsymbol{u} \rangle} = \overline{a} \overline{\langle \boldsymbol{u} | \boldsymbol{v} \rangle}$

An inner product on V over $\mathbb R$ restricts to $\mathbb R$, i.e. the codomain of $\langle \bullet | \bullet \rangle$ is $\mathbb R$, $\langle \boldsymbol{v} | \boldsymbol{u} \rangle = \langle \boldsymbol{u} | \boldsymbol{v} \rangle$ in the third axiom and $\boldsymbol{a} \in \mathbb R$ in the last.

Inner product examples

The standard inner product in the arithmetic vector space \mathbb{C}^n :

$$\langle \boldsymbol{u} | \boldsymbol{v} \rangle = u_1 \overline{v_1} + \dots + u_n \overline{v_n} = \sum_{i=1}^n u_i \overline{v_i} = \boldsymbol{v}^H \boldsymbol{u}$$

The standard inner product in the arithmetic vector space \mathbb{R}^n :

$$\langle \boldsymbol{u} | \boldsymbol{v} \rangle = \sum_{i=1}^{n} u_i v_i = \boldsymbol{v}^T \boldsymbol{u}$$

An inner product on \mathbb{R}^n determined by a *regular* matrix A:

$$\langle \boldsymbol{u} | \boldsymbol{v} \rangle = \boldsymbol{v}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{u}$$

e.g. for $V=\mathbb{R}^2$ and ${\bf A}=\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ we have:

$$\langle \boldsymbol{u} | \boldsymbol{v} \rangle = (v_1, v_2) \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = u_1 v_1 + 2u_1 v_2 + 2u_2 v_1 + 5u_2 v_2$$

An inner product on the vector space of real continuous integrable functions on the interval [a,b]: $\langle f|g\rangle = \int_a^b f(x)g(x)dx$

Norm

Definition: Let V be an inner space (over $\mathbb C$ or $\mathbb R$). The norm based upon the inner product is the map $|| \bullet || : V \to \mathbb R$ defined as $|| \mathbf u || = \sqrt{\langle \mathbf u | \mathbf u \rangle}$.

Geometric interpretation in Euclidean inner spaces:

||u|| ... the length of u ||u-v|| ... the distance between points u and v $\langle u|v\rangle$... is related to the "angle" between u and v and also to the length of u and v. More precisely:

Observation: The standard inner product on \mathbb{R}^n and the associated norm satisfy: $\langle \boldsymbol{u}|\boldsymbol{v}\rangle = ||\boldsymbol{u}||\cdot||\boldsymbol{v}||\cos\varphi$, where φ is the angle between the vectors \boldsymbol{u} and \boldsymbol{v} (seen as segments stemming from $\boldsymbol{0}$).

Proof: By the law of cosines: $c^2 = a^2 + b^2 - 2ab\cos\varphi$. Substitute $a = ||\mathbf{u}||, \ b = ||\mathbf{v}||, \ c = ||\mathbf{u} - \mathbf{v}||$. $\langle \mathbf{u} - \mathbf{v}|\mathbf{u} - \mathbf{v}\rangle = \langle \mathbf{u}|\mathbf{u}\rangle + \langle \mathbf{v}|\mathbf{v}\rangle - 2||\mathbf{u}|| \cdot ||\mathbf{v}||\cos\varphi$ $\langle \mathbf{u} - \mathbf{v}|\mathbf{u} - \mathbf{v}\rangle = \langle \mathbf{u}|\mathbf{u}\rangle + \langle \mathbf{v}|\mathbf{v}\rangle - \langle \mathbf{u}|\mathbf{v}\rangle - \langle \mathbf{v}|\mathbf{u}\rangle$

Cauchy-Schwarz inequality

Theorem: The inner product of any two vectors \boldsymbol{u} and \boldsymbol{v} from any inner space over $\mathbb C$ satisfies: $|\langle \boldsymbol{u}|\boldsymbol{v}\rangle| \leq \sqrt{\langle \boldsymbol{u}|\boldsymbol{u}\rangle\langle \boldsymbol{v}|\boldsymbol{v}\rangle}$.

In other words, w.r.t. the associated norm: $|\langle \mathbf{u} | \mathbf{v} \rangle| \le ||\mathbf{u}|| \cdot ||\mathbf{v}||$.

Proof: When $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, we get $0 \le 0$.

For any $a \in \mathbb{C}$ it holds that $||u + av||^2 \ge 0$, but also:

$$||\mathbf{u} + a\mathbf{v}||^2 = \langle \mathbf{u} + a\mathbf{v} | \mathbf{u} + a\mathbf{v} \rangle = \langle \mathbf{u} | \mathbf{u} \rangle + a \langle \mathbf{v} | \mathbf{u} \rangle + \overline{a} \langle \mathbf{u} | \mathbf{v} \rangle + a \overline{a} \langle \mathbf{v} | \mathbf{v} \rangle$$

Choose $a = -\frac{\langle u|v \rangle}{\langle v|v \rangle}$ to cancel the last two terms. We get:

$$0 \leq \langle \boldsymbol{u} | \boldsymbol{u} \rangle - \frac{\langle \boldsymbol{u} | \boldsymbol{v} \rangle}{\langle \boldsymbol{v} | \boldsymbol{v} \rangle} \langle \boldsymbol{v} | \boldsymbol{u} \rangle \quad \dots \cdot \langle \boldsymbol{v} | \boldsymbol{v} \rangle > 0$$

$$\langle \boldsymbol{u} | \boldsymbol{v} \rangle \langle \boldsymbol{v} | \boldsymbol{u} \rangle \leq \langle \boldsymbol{u} | \boldsymbol{u} \rangle \langle \boldsymbol{v} | \boldsymbol{v} \rangle \quad \dots \text{on } \mathbb{C} \text{ holds } a\overline{a} = |a|^2$$

$$|\langle \boldsymbol{u} | \boldsymbol{v} \rangle|^2 \leq ||\boldsymbol{u}||^2 \cdot ||\boldsymbol{v}||^2 \quad \dots \text{take square root}$$

$$|\langle \boldsymbol{u} | \boldsymbol{v} \rangle| \leq ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}||$$

Consequences

Theorem: (AM-RMS inequality)

For any
$$\mathbf{u} \in \mathbb{R}^n$$
: $\frac{1}{n} \sum_{i=1}^n u_i \le \sqrt{\frac{1}{n} \sum_{i=1}^n u_i^2}$

Proof: Choose $\mathbf{v} = (1, 1, \dots, 1)^T$ and apply Cauchy-Schwarz inequality on the standard inner product:

$$\sum_{i=1}^n u_i = \langle \boldsymbol{u} | \boldsymbol{v} \rangle \le |\langle \boldsymbol{u} | \boldsymbol{v} \rangle| \le ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| = \sqrt{\sum_{i=1}^n u_i^2} \cdot \sqrt{n}$$

Proposition: Any norm based upon an inner product satisfies the triangle inequality: $||\boldsymbol{u} + \boldsymbol{v}|| \le ||\boldsymbol{u}|| + ||\boldsymbol{v}||$

Proof:

$$\begin{aligned} ||\boldsymbol{u}+\boldsymbol{v}|| &= \sqrt{\langle \boldsymbol{u}+\boldsymbol{v}|\boldsymbol{u}+\boldsymbol{v}\rangle} = \sqrt{\langle \boldsymbol{u}|\boldsymbol{u}\rangle + \langle \boldsymbol{v}|\boldsymbol{u}\rangle + \langle \boldsymbol{u}|\boldsymbol{v}\rangle + \langle \boldsymbol{v}|\boldsymbol{v}\rangle} \leq \\ \sqrt{||\boldsymbol{u}||^2 + 2|\langle \boldsymbol{u}|\boldsymbol{v}\rangle| + ||\boldsymbol{v}||^2} &\leq \sqrt{||\boldsymbol{u}||^2 + 2||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| + ||\boldsymbol{v}||^2} = ||\boldsymbol{u}|| + ||\boldsymbol{v}|| \end{aligned}$$