
Jordan normal form
Example: The matrix

(
1 1
0 1

)
is not diagonalizable in any field.

Proof: It has eigenvalue 1 of multiplicity two, hence could only be

similar to I2. But for any regular R: R−1I2R = I2 6=
(
1 1
0 1

)
.

Definition: A Jordan block is
a square matrix of the form Jλ =


λ 1

λ
. . .
. . . 1

λ


Theorem: Every square complex
matrix A is similar to a matrix J
in the so called Jordan normal form

J =

Jλ1
. . .

Jλk


Each Jordan block Jλi corresponds to an eigenvalue λi of A.
A λi may yield several Jordan blocks, indeed of various sizes.
Fact: For each λ, the number of blocks and their sizes are uniquely
determined by A. Hence the Jordan normal form of A is unique
upto a permutation of the Jordan blocks on the diagonal.
Observation: A diagonalizable matrix has Jordan blocks of size one.
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Generalized eigenvectors
When A is diagonalizable, i.e. AR = RD,

then the columns of R are eigenvectors of A.
What can we say about matrices that are not diagonalizable?

Proposition: Let AR = RJλ.
If xi is the i-th column of R, then it satisfies (A− λI)ixi = 0.
Proof:

λ 1
RJλ λ . . . 1

λ

x1 x2 . . . xn λx1 x1 + λx2 . . . xn−1 + λxn

Ax1 = λx1 ⇒ (A− λI)x1 = 0
Ax2 = x1 + λx2 ⇒ (A− λI)x2 = x1 ⇒ (A− λI)2x2 = 0

...
Axn = xn−1 + λxn ⇒ (A− λI)xn = xn−1 ⇒ (A− λI)nxn = 0

Definition: Generalized eigenvector of a matrix A for an eigenvalue
λ is any vector x satisfying (A− λI)ix = 0 for some i ∈ N.
They form chains xk , . . . , x2, x1,0, where (A− λI)xi = xi−1.
Analogously, for a linear map f we get f (xi)− λxi = xi−1.
In another notation: x ∈ ker((A− λI)i), or x ∈ ker((f − λid)i).
Theorem: (equivalent version of Jordan’s normal form theorem)
Each finitely generated space V over C and linear f : V → V has
a basis from chains of generalized eigenvectors of the map f .
Note: Also holds for any K, when eigenvalues have algebraic
multiplicity dim(V ), i.e. if p[f ]X ,X (t) decomposes into linear terms.
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Example

The matrix A =

−1 7 −5
−2 7 −4
−1 3 −1

 is similar to a matrix in the

Jordan normal form with two blocks

2 1 0
0 2 0
0 0 1

, because
AR =

−1 7 −5
−2 7 −4
−1 3 −1

3 2 1
2 2 1
1 1 1

 =

3 2 1
2 2 1
1 1 1

2 1 0
0 2 0
0 0 1

 = RJ

(3, 2, 1)T is an eigenvector for 2, i.e. (A− 2I3)(3, 2, 1)T = 0 and
(1, 1, 1)T is an eigenvector for 1, i.e. (A− 1I3)(1, 1, 1)T = 0.

The middle column of the matrix R however satisfies
A · (2, 2, 1)T = (3, 2, 1)T + 2 · (2, 2, 1)T =⇒
(A− 2I3) (2, 2, 1)T = (3, 2, 1)T =⇒
(A− 2I3)2(2, 2, 1)T = (A− 2I3)(3, 2, 1)T = 0.



Proof of the theorem — Part 1

By induction on dim(V ). For each eigenvalue λ we introduce the
map gλ(x) = f (x)− λx. We fix some eigenvalue λ arbitrarily.
Since both f and id are linear maps, gλ = f − λid is also linear.
Denote W = gλ(V ), the range of the map gλ.
Since gλ is a linear map, W is a vector space. Indeed W is a
subspace of V , because ∀x ∈ V : gλ(x) = f (x)− λx ∈ V .
Next, dim(W ) < dim(V ) because the eigenvector u for λ satisfies
gλ(x) = f (x)− λx = 0, i.e. dim(ker(gλ)) ≥ 1 and thus
dim(V ) = dim(gλ(V )) + dim(ker(gλ)) = dim(W ) + dim(ker(gλ)).
The map f can be restricted to W , since for gλ(x) ∈W we have
f (gλ(x)) = f (f (x)− λx) = f (f (x))− λf (x) = gλ(f (x)) ∈W .
According to the inductive hypothesis for f and W , the subspace
W has a basis Y from chains of generalized eigenvectors of f .



Example for the first part of the proof

V
Wf gλ

ker(gλ) Y
x→ f (x)− λx

f W

Y

For [f ]K ,K =
(
−1 7 −5
−2 7 −4
−1 3 −1

)
aλ = 2 is [g2]K ,K =

(
−3 7 −5
−2 5 −4
−1 3 −3

)
∼∼

(
1 0 −3
0 1 −2
0 0 0

)
Z = {(3, 2, 1)T} is a basis of ker(g2) so dim(W ) = 3− 1 = 2.
When we extend Z by e1, e2 to a basis of V , we get
{g2(e1), g2(e2)} = {(−3,−2,−1)T , (7, 5, 3)T} as a basis of W .
Note that W ∩ ker(g2) 6= ∅. This intersection has dimension 1.
There are two chains that form the basis Y of the subspace W :
the first is (3, 2, 1)T for λ = 2 and the next is (1, 1, 1)T for λ = 1.
(Both have length one, so they contain "ordinary" eigenvectors.)



Proof of theorem — Part 2
Denote d = dim(ker(gλ)) and d ′ = dim(ker(gλ) ∩W ).
Arrange the basis Y into r strings so that the first d ′ corresponds
to λ and others correspond to the other eigenvalues λ′, . . . , λ′···′:

y1
k1

gλ−→ · · · · · · · · · gλ−→ y1
2

gλ−→ y1
1

gλ−→ 0
y2

k2

gλ−→ · · · gλ−→ y2
2

gλ−→ y2
1

gλ−→ 0...
yd ′

kd′

gλ−→ · · · gλ−→ yd ′
1

gλ−→ 0
yd ′+1

kd′+1

gλ′−−→ · · · gλ′−−→ yd ′+1
1

gλ′−−→ 0...
· · · y r

1
gλ′···′−−−→ 0

As chains of Y are in W , we can extend each of the first d ′ chains
by some x i ∈ V so that gλ(x i) = y i

ki
for i ∈ {1, . . . , d ′}.

The vectors y1
1 , . . . , yd ′

1 form the basis of the space ker(gλ) ∩W .
Complete them by z1, . . . , zd−d ′ to a basis of ker(gλ) (other than
Z ) and get d − d ′ new chains of length 1 formed by z1, . . . , zd−d ′ .



That yields chains

x1 gλ−→ y1
k1

gλ−→ · · · gλ−→ y1
2

gλ−→ y1
1

gλ−→ 0...
xd ′ gλ−→ yd ′

kd′

gλ−→ · · · gλ−→ yd ′
1

gλ−→ 0
yd ′+1

kd′+1

gλ′−−→ · · · gλ′−−→ yd ′+1
1

gλ′−−→ 0...
· · · y r

1
gλ′···′−−−→ 0

z1 gλ−→ 0...
zd−d ′ gλ−→ 0

In our example:

(2, 2, 1)T g2−→ (3, 2, 1)T g2−→ 0
(1, 1, 1)T g1−→ 0

We have no z i because d = d ′ = 1.

We added d = dim(ker(gλ)) vectors to the basis of W ,
so in total we have as many as is the dimension of the space V .

We show that they are linearly independent and therefore they
form a basis of the space V .



V
Wf gλ

ker(gλ) Y
x→ f (x)− λx

f

y11. . y
r
kr

. . yrkr

z11. . z
d−d′

1

x1. . xd
′

y1k1 . . y
d′

kd′

W

Y

. . yr1y11 . . y
d′

1

Consider a linear combination
∑
i

aix i +
∑
i

bi ,jy i
j +

∑
i

ciz i = 0.

Since 0 = gλ(0) = gλ

(∑
i

aix i +
∑
i ,j

bi ,jy i
j +

∑
i

ciz i
)

=
∑
i ,j

b′i ,jy i
j ,

where the vectors y i
j

are linearly independent,

we must have 0 = b′i ,j =


ai for i ≤ d ′, j = ki

bi ,j+1 for i ≤ d ′, j < ki

(λ∗ − λ)bi ,j for i > d ′, j = ki

(λ∗ − λ)bi ,j + bi ,j+1 for i > d ′, j < ki
where λ∗ 6= λ matches
the i-th chain.
It follows from gλ(x i) = y i

ki
and gλ(y i

j ) = y i
j−1 for i ≤ d ′; while for

i > d ′ : gλ(y i
1) = f (y i

1)− λy i
1 = λ∗y i

1 − λy i
1 = (λ∗ − λ)y i

1 and for
j > 1 also: gλ(y i

j ) = f (y i
j )− λy i

j = f (y i
j )− λ∗y i

j + (λ∗ − λ)y i
j =

gλ∗(y i
j ) + (λ∗ − λ)y i

j = y i
j−1 + (λ∗ − λ)y i

j .

The first case gives: ∀i : ai = 0, the next: ∀i ≤ d ′,∀j > 1 : bi ,j = 0
and the other two: ∀i > d ′,∀j : bi ,j = 0. In the combination, only
the coefficients bi ,1 fori ≤ d ′ and ci remain, but they are also zero,
since the vectors y1

1 , . . . , yd ′
1 , z1, . . . , zd−d ′ form a basis of ker(gλ).
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Calculation of chains corresponding to λ
Notation: Map g i

λ = gλ ◦ gλ ◦ · · · ◦ gλ︸ ︷︷ ︸
i×

. . . corresponds to
(A− λI)i

Procedure:

x′1 0x′2

xi+1

x′i

gλ

xk x1 0x2xi

R1R2RiRi+1Rk

g i
λ

V1V2ViVi+1Vk Vi−1

I We determine the sequence of spaces V1 ( V2 ( · · · ( Vk ,
where Vi = ker(g i

λ) and k = min{i : ker(g i
λ) = ker(g i+1

λ )}.
I We set Rk+1 = ∅ and for i from k to 1:

I calculate the set gλ(Ri+1)
. . . we extend the already establlished chains

I and extend it by vectors from Vi \ Vi−1 to a linearly
independent set Ri of size dim(Vi)− dim(Vi−1)

. . . we add to Ri the beginnings of new chains
A Jordan cell of size i corersponds to a chain that begins some
xi ∈ Ri \ gλ(Ri+1) followed by its images xi−j = g j

λ(xi) ∈ Ri−j .



Example

A =


−2 −3 6 2 −3 −2 −8
−2 0 4 0 −1 −1 −4
0 1 1 0 3 −1 −1
2 2 −4 0 4 1 4
1 0 −2 0 1 1 2
−2 −3 4 1 −4 1 −5
2 3 −4 −1 5 0 5


pA(t) =
= t7 − 6t6 + 15t5 − 20t4 + 15t3 − 6t2 + t

= t · (t − 1)6

Eigenvalues are λ1 = 0 and λ2 = 1.
Since the algebraic multiplicity of λ1 is 1, it has geometric
multiplicity 1 as well and it corersponds to a Jordan cell of size 1.

(0, 0, 1, 1, 0, 0, 1)T 0gλ1

We choose an eigenvector x1 = (0, 0, 1, 1, 0, 0, 1)T for λ1.



Example
(0, 0, 1, 1, 0, 0, 1)T

0

0

0

V1V2

V3V4

gλ1gλ2

x′4 x′3 x′2 x′1

x′′2 x′′1

The matrix
B = A−λ2I7 =
has rank 5.


−3 −3 6 2 −3 −2 −8
−2 −1 4 0 −1 −1 −4
0 1 0 0 3 −1 −1
2 2 −4 −1 4 1 4
1 0 −2 0 0 1 2
−2 −3 4 1 −4 0 −5
2 3 −4 −1 5 0 4


dim(V1) = 7− 5 = 2.
The eigenvalue λ2 = 1
thus corresponds to
two Jordan cels,
i.e. to two chains.

The chain lengths can be derived from dimensions of V2,V3, . . .
rank(B2) = 3⇒ dim(V2) = 4⇒ both chains have length at least 2
rank(B3) = 2⇒ dim(V3) = 5⇒ one lenght is 2 and the other 4.

Jordan normal form is J =


0 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1





Example — calculation of generalized eigenvectors
(0, 0, 1, 1, 0, 0, 1)T

(1, 0, 0, 0, 0, 0, 0)T (−3,−2, 0, 2, 1,−2, 2)T (4, 1, 1,−2,−1, 0,−1)T (−2, 0,−1, 0, 0, 0, 0)T

(0, 0, 0, 3,−1,−4, 2)T (1,−3,−1,−3, 0,−3, 0)T
0

0

0

V1V2

V3V4

gλ1gλ2

Choose e.g. x ′4 = (1, 0, 0, 0, 0, 0, 0)T ∈ V4, then
x ′3 = gλ2(x ′4) = Bx ′4 = (−3,−2, 0, 2, 1,−2, 2)T ∈ V3 and
x ′2 = gλ2(x ′3) = Bx ′3 = (4, 1, 1,−2,−1, 0,−1)T ∈ V2.

Choose vector x ′′2 ∈ V2 \ V1 linearly independent on x ′2
(we show later how), e.g. x ′′2 = (0, 0, 0, 3,−1,−4, 2)T .

Now x ′1 = gλ2(x ′2) = Bx ′2 = (−2, 0,−1, 0, 0, 0, 0)T ∈ V1
and x ′′1 = gλ2(x ′′2 ) = Bx ′′2 = (1,−3,−1,−3, 0,−3, 0)T ∈ V1.

The desired regular matrix R for AR = RJ is

R =

 | | | | | | |
x1 x ′1 x ′2 x ′3 x ′4 x ′′1 x ′′2
| | | | | | |

 =


0 −2 4 −3 1 1 0
0 0 1 −2 0 −3 0
1 −1 1 0 0 −1 0
1 0 −2 2 0 −3 3
0 0 −1 1 0 0 −1
0 0 0 −2 0 −3 −4
1 0 −1 2 0 0 2





Example — choice of x ′′2
Calculate the basis of V2, i.e. of the space ker(B2).

B2 =


4 4 −8 −2 6 2 10
1 2 −2 −1 3 0 3
1 −1 −2 0 −2 2 3
−2 −5 4 2 −8 1 −5
−1 −2 2 1 −3 0 −3
0 0 0 0 0 0 0
−1 −3 2 1 −5 1 −2

 ∼∼(1 0 −2 0 0 1 2
0 1 0 0 2 −1 −1
0 0 0 1 1 −1 −3

)
⇒ ker(B2) =

= L((−2, 0,−1, 0, 0, 0, 0)T , (0, 2, 0, 1,−1, 0, 0)T , (1,−1, 0,−1, 0,−1, 0)T , (2,−1, 0,−3, 0, 0,−1)T )

Put the basis row-wise into a matrix and transform it to a echelon form.(
−2 0 −1 0 0 0 0
0 2 0 1 −1 0 0
1 −1 0 −1 0 −1 0
2 −1 0 −3 0 0 −1

)
∼∼

(
3 0 0 0 −2 −5 1
0 3 0 0 −1 2 −1
0 0 3 0 4 10 −2
0 0 0 3 −1 −4 2

)
= M1

Do the same for the space V1, where we add x ′2 to the basis.

B =


−3 −3 6 2 −3 −2 −8
−2 −1 4 0 −1 −1 −4
0 1 0 0 3 −1 −1
2 2 −4 −1 4 1 4
1 0 −2 0 0 1 2
−2 −3 4 1 −4 0 −5
2 3 −4 −1 5 0 4

 ∼∼
1 0 −2 0 0 1 0

0 1 0 0 0 −1 0
0 0 0 1 0 −1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

 ⇒

ker(B) = L((2, 0,−1, 0, 0, 0, 0)T , (1,−1, 0,−1, 0,−1, 0)T(
−2 0 −1 0 0 0 0
0 2 0 1 −1 0 0
4 1 1 −2 −1 0 −1

)
∼∼

(
3 0 0 −3 −1 −1 −1
0 3 0 0 −1 2 −1
0 0 3 6 2 2 2

)
= M2

The row of M1 with pivot in another column, that are pivots of M2, is x ′′2 .


