Special complex matrices

Definition: The Hermitian transpose of a complex matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is the matrix $\boldsymbol{A}^{H} \in \mathbb{C}^{n \times m}$ where $\left(\boldsymbol{A}^{H}\right)_{i, j}=\overline{a_{j, i}}$.
Definition: A matrix \boldsymbol{A} is Hermitian if $\boldsymbol{A}=\boldsymbol{A}^{H}$.
Definition: A matrix \boldsymbol{A} is unitary if $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\boldsymbol{H}}$.

real	complex
transpose $\boldsymbol{A} \rightarrow \boldsymbol{A}^{T}$	Hermitian transpose $\boldsymbol{A} \rightarrow \boldsymbol{A}^{H}$
$\left(\begin{array}{ll}1 & 3\end{array}\right) \rightarrow\binom{1}{3}$	$\left(\begin{array}{cc}1+i & -2 i\end{array}\right) \rightarrow\binom{1-i}{2 i}$
symmetric $\boldsymbol{A}=\boldsymbol{A}^{T}$	Hermitian $\boldsymbol{A}=\boldsymbol{A}^{H}$
$\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right)$	$\left(\begin{array}{cc}1 & 1+i \\ 1-i & 2\end{array}\right)$
orthogonal $\boldsymbol{A}^{-1}=\boldsymbol{A}^{T}$	unitary $\boldsymbol{A}^{-1}=\boldsymbol{A}^{H}$
$\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$	$\left(\begin{array}{cc}\frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}}\end{array}\right)$

Properties

Observation: Hermitian matrices have real diagonal:
If $a_{i, i}=\overline{a_{i, i}}$, then $a_{i, i} \in \mathbb{R}$.
Observation: $\left(\boldsymbol{A}^{H}\right)^{H}=\boldsymbol{A}, \quad(\boldsymbol{A B})^{H}=\boldsymbol{B}^{H} \boldsymbol{A}^{H}$
Observation: If \boldsymbol{A} is unitary then \boldsymbol{A}^{H} is unitary.
$\left(\boldsymbol{A}^{H}\right)^{H}=\boldsymbol{A}=\left(\boldsymbol{A}^{-1}\right)^{-1}=\left(\boldsymbol{A}^{H}\right)^{-1}$
Observation: The product of unitary matrices is unitary:
If $\boldsymbol{A}^{H}=\boldsymbol{A}^{-1}$ and $\boldsymbol{B}^{H}=\boldsymbol{B}^{-1}$, then
$(\boldsymbol{A B})^{H}=\boldsymbol{B}^{H} \boldsymbol{A}^{H}=\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}=(\boldsymbol{A B})^{-1}$.
Observation: Any unitary \boldsymbol{A} satisfies: $\boldsymbol{A}^{H} \boldsymbol{A}=\boldsymbol{I}$. I.e. if $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ are columns of \boldsymbol{A}, then $\left(\boldsymbol{x}^{i}\right)^{H} \boldsymbol{x}^{j}=0$ for $i \neq j$ and $\left(\boldsymbol{x}^{i}\right)^{H} \boldsymbol{x}^{i}=1$.

Fact: Any $\boldsymbol{x} \in \mathbb{C}^{n}$ such that $\boldsymbol{x}^{H} \boldsymbol{x}=1$ can be completed to a unitary matrix.

Diagonalization of Hermitian matrices

Theorem: Every Hermitian matrix \boldsymbol{A} has all eigenvalues real. Also, a unitary matrix R exists, such that $R^{-1} A R$ is diagonal.
Example: Diagonalize a Hermitian matrix $\boldsymbol{A}=\left(\begin{array}{cc}1 & 1+i \\ 1-i & 2\end{array}\right)$.
$p_{\boldsymbol{A}}(t)=\left|\begin{array}{ll}1-t & 1+i \\ 1-i & 2-t\end{array}\right|=(1-t)(2-t)-(1-i)(1+i)=t^{2}-3 t$
Eigenvalues of \boldsymbol{A} are $\lambda_{1}=3$ and $\lambda_{2}=0$.
The corresponding unitary matrix composed from eigenvectors is: $\quad \boldsymbol{R}=\left(\begin{array}{cc}1 & \sqrt{3} \\ \frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}}\end{array}\right)$

$$
\boldsymbol{R}^{-1}=\boldsymbol{R}^{H}=\left(\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}}
\end{array}\right) \cdot\left(\text { Indeed } \boldsymbol{R} \text { is self-inverse: } \boldsymbol{R}^{-1}=\boldsymbol{R} .\right)
$$

The diagonalization goes by the product: $\boldsymbol{R}^{-1} \boldsymbol{A} \boldsymbol{R}=\left(\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right)$.
If we revert the order of the eigenvalues $\lambda_{1}=0, \lambda_{2}=3$, then we get:
$\boldsymbol{S}=\left(\begin{array}{cc}\frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & \frac{1-i}{\sqrt{3}}\end{array}\right), \boldsymbol{S}^{-1}=\boldsymbol{S}^{H}=\left(\begin{array}{cc}\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}}\end{array}\right)$ and $\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\left(\begin{array}{ll}0 & 0 \\ 0 & 3\end{array}\right)$.

Proof

By induction on n, the theorem holds for $n=1$. Denote $\boldsymbol{A}_{n}=\boldsymbol{A}$.
In \mathbb{C}, the matrix \boldsymbol{A}_{n} has an eigenvalue λ with an eigenvector \boldsymbol{x}.
Scale \boldsymbol{x} by the factor $\frac{1}{\sqrt{\boldsymbol{x}^{H}}}$, to get \boldsymbol{x} satisfying $\boldsymbol{x}^{H} \boldsymbol{x}=1$.
Extend (by the fact above) x to a unitary matrix \boldsymbol{P}_{n}.
$\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{P}_{n}$ is Hermitian: $\left(\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{P}_{n}\right)^{H}=\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n}^{H}\left(\boldsymbol{P}_{n}^{H}\right)^{H}=\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{P}_{n}$.
Since $\boldsymbol{A}_{n} \boldsymbol{x}=\lambda \boldsymbol{x}$, the matrix $\boldsymbol{A}_{n} \boldsymbol{P}_{n}$ has $\lambda \boldsymbol{x}$ as the first column.
As \boldsymbol{P}_{n} is unitary, the first column of $\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{P}_{n}$ is $\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{x}=$ $\boldsymbol{P}_{n}^{H}\left(\boldsymbol{A}_{n} \boldsymbol{x}\right)=\boldsymbol{P}_{n}^{H}(\lambda \boldsymbol{x})=\lambda \boldsymbol{P}_{n}^{H} \boldsymbol{x}=\lambda(1,0, \ldots, 0)^{T}=(\lambda, 0, \ldots, 0)^{T}$.
As $\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{P}_{n}$ is Hermitian, $\lambda \in \mathbb{R}$ and the rest of the first row is $\mathbf{0}^{T}$.

Hence $\boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{P}_{n}=$| λ | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{A}_{n-1} | , where \boldsymbol{A}_{n-1} is Hermitian.

By the induction hypothesis, $\boldsymbol{R}_{n-1}^{-1} \boldsymbol{A}_{n-1} \boldsymbol{R}_{n-1}=\boldsymbol{D}_{n-1}$ for some unitary matrix \boldsymbol{R}_{n-1} and a diagonal matrix \boldsymbol{D}_{n-1}.

Choose $\boldsymbol{R}_{n}=\boldsymbol{P}_{n} \cdot$| 1 | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{R}_{n-1} |, products of unitary matrices are unitary. Now:

$\boldsymbol{R}_{n}^{-1} \boldsymbol{A}_{n} \boldsymbol{R}_{n}=\boldsymbol{R}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{R}_{n}=$| 1 | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{R}_{n-1}^{H} |$\cdot \boldsymbol{P}_{n}^{H} \boldsymbol{A}_{n} \boldsymbol{P}_{n} \cdot$| 1 | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{R}_{n-1} |$=$

$=$| $\mathbf{1}$ | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{R}_{n-1}^{H} |\cdot| λ | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{A}_{n-1} |\cdot| 1 | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{R}_{n-1} |$=$| λ | $\mathbf{0}^{T}$ |
| :---: | :---: |
| $\mathbf{0}$ | \boldsymbol{D}_{n-1} |$=\boldsymbol{D}_{n}$

Theorem: Every real symmetric matrix \boldsymbol{A} has all eigenvalues real. Also, an orthogonal matrix \boldsymbol{R} exists, such that $\boldsymbol{R}^{-1} \boldsymbol{A} \boldsymbol{R}$ is diagonal.

By the same proof, only the eigenvector \boldsymbol{x} shall be real. Such \boldsymbol{x} exists, since the system $(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$ has all coefficients real.

Example

Given $\boldsymbol{A}=\boldsymbol{A}_{3}=$
$=\left(\begin{array}{ccc}2 & \frac{2(1+i)}{3} & \frac{-1-i}{3} \\ \frac{2(1-i)}{3} & \frac{2}{3} & \frac{2 i}{3} \\ \frac{-1+i}{3} & -\frac{2 i}{3} & \frac{7}{3}\end{array}\right)$

$$
p_{A_{3}}(t)=t^{3}-5 t^{2}+6 t
$$

$$
\lambda=2 \text { corresponds to }\left(1, \frac{1}{2}, 1\right)^{T}
$$

$$
\text { we scale it to } x=\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)^{T}
$$

We extend x

$$
\boldsymbol{P}_{3}=\left(\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right.
$$

$$
\begin{array}{rr|r}
-\frac{2}{3} & -\frac{1}{3} \\
\frac{2}{3} & -\frac{2}{3} & \text { and get } \\
1 & \text { Hermitian }
\end{array}
$$

$$
\boldsymbol{P}_{3}^{H} \boldsymbol{A}_{3} \boldsymbol{P}_{3}=
$$

to unitary

$$
=\left(\begin{array}{c|cc}
2 & 0 & 0 \\
\hline 0 & 1 & 1+i \\
0 & 1-i & 2
\end{array}\right)
$$

By induction hypothesis we diagonalize $\boldsymbol{R}_{2}^{-1} \boldsymbol{A}_{2} \boldsymbol{R}_{2}=\boldsymbol{D}_{2}$:

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{cc}
1 & 1+i \\
1-i & 2
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}}
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right)
$$

For

$\boldsymbol{R}_{\mathbf{3}}=\boldsymbol{P}_{\mathbf{3}} \cdot$| 1 | $\mathbf{0}^{T}$ |
| :--- | :--- |
| $\mathbf{0}$ | $\boldsymbol{R}_{\mathbf{2}}$ |\(=\left(\begin{array}{ccc}\frac{2}{3} \& \frac{-3+i}{3 \sqrt{3}} \& \frac{-1-2 i}{3 \sqrt{3}}

\frac{1}{3} \& \frac{2 i}{3 \sqrt{3}} \& \frac{4+2 i}{3 \sqrt{3}}

\frac{2}{3} \& \frac{3-2 i}{3 \sqrt{3}} \& \frac{-1+i}{3 \sqrt{3}}\end{array}\right)\) then holds: $\boldsymbol{R}_{3}^{-1} \boldsymbol{A}_{3} \boldsymbol{R}_{3}$
$=\boldsymbol{D}_{3}=\left(\begin{array}{lll}2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0\end{array}\right)$

