
Special complex matrices
Definition: The Hermitian transpose of a complex matrix
A ∈ Cm×n is the matrix AH ∈ Cn×m where (AH)i ,j = aj,i .

Definition: A matrix A is Hermitian if A = AH .

Definition: A matrix A is unitary if A−1 = AH .
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Properties
Observation: Hermitian matrices have real diagonal:
If ai ,i = ai ,i , then ai ,i ∈ R.

Observation: (AH)H = A, (AB)H = BHAH

Observation: If A is unitary then AH is unitary.
(AH)H = A = (A−1)−1 = (AH)−1

Observation: The product of unitary matrices is unitary:
If AH = A−1 and BH = B−1, then
(AB)H = BHAH = B−1A−1 = (AB)−1.

Observation: Any unitary A satisfies: AHA = I.
I.e. if x1, x2, . . . , xn are columns of A,
then (x i)Hx j = 0 for i 6= j and (x i)Hx i = 1.
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Fact: Any x ∈ Cn such that xHx = 1
can be completed to a unitary matrix.
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Diagonalization of Hermitian matrices
Theorem: Every Hermitian matrix A has all eigenvalues real.
Also, a unitary matrix R exists, such that R−1AR is diagonal.

Example: Diagonalize a Hermitian matrix A =
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Eigenvalues of A are λ1 = 3 and λ2 = 0.
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Proof
By induction on n, the theorem holds for n = 1. Denote An = A.
In C, the matrix An has an eigenvalue λ with an eigenvector x.
Scale x by the factor 1√

xHx
, to get x satisfying xHx = 1.

Extend (by the fact above) x to a unitary matrix Pn.

PH
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Since Anx = λx, the matrix AnPn has λx as the first column.
As Pn is unitary, the first column of PH
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By the induction hypothesis, R−1
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for some unitary matrix Rn−1 and a diagonal matrix Dn−1.



Choose Rn = Pn ·
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unitary. Now:
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Theorem: Every real symmetric matrix A has all eigenvalues real.
Also, an orthogonal matrix R exists, such that R−1AR is diagonal.

By the same proof, only the eigenvector x shall be real. Such x
exists, since the system (A− λI)x = 0 has all coefficients real.
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