Special complex matrices

Definition: The Hermitian transpose of a complex matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ is the matrix $\mathbf{A}^{H} \in \mathbb{C}^{n \times m}$ where $(\mathbf{A}^{H})_{i,j} = \overline{a_{j,i}}$.

Definition: A matrix **A** is *Hermitian* if $\mathbf{A} = \mathbf{A}^{H}$.

Definition: A matrix **A** is unitary if $\mathbf{A}^{-1} = \mathbf{A}^{H}$.

Properties

Observation: Hermitian matrices have real diagonal: If $a_{i,i} = \overline{a_{i,i}}$, then $a_{i,i} \in \mathbb{R}$.

Observation: $(\mathbf{A}^{H})^{H} = \mathbf{A}$, $(\mathbf{A}\mathbf{B})^{H} = \mathbf{B}^{H}\mathbf{A}^{H}$

Observation: If **A** is unitary then A^{H} is unitary. $(\mathbf{A}^{H})^{H} = \mathbf{A} = (\mathbf{A}^{-1})^{-1} = (\mathbf{A}^{H})^{-1}$

Observation: The product of unitary matrices is unitary: If $\mathbf{A}^{H} = \mathbf{A}^{-1}$ and $\mathbf{B}^{H} = \mathbf{B}^{-1}$, then $(AB)^{H} = B^{H}A^{H} = B^{-1}A^{-1} = (AB)^{-1}.$

Observation: Any unitary **A** satisfies: $\mathbf{A}^{H}\mathbf{A} = \mathbf{I}$. I.e. if $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n$ are columns of \mathbf{A} , $\mathbf{A} = \begin{vmatrix} \mathbf{x}^1 \\ \mathbf{x}^1 \end{vmatrix} \dots \begin{vmatrix} \mathbf{x}^n \\ \mathbf{x}^n \end{vmatrix}$ then $(\mathbf{x}^i)^H \mathbf{x}^j = 0$ for $i \neq j$ and $(\mathbf{x}^i)^H \mathbf{x}^i = 1$.

Fact: Any $\mathbf{x} \in \mathbb{C}^n$ such that $\mathbf{x}^H \mathbf{x} = 1$ can be completed to a unitary matrix.

Diagonalization of Hermitian matrices

Theorem: Every Hermitian matrix **A** has all eigenvalues real. Also, a unitary matrix **R** exists, such that $\mathbf{R}^{-1}\mathbf{A}\mathbf{R}$ is diagonal.

Example: Diagonalize a Hermitian matrix $\mathbf{A} = \begin{pmatrix} 1 & 1+i \\ 1-i & 2 \end{pmatrix}$. $p_{\mathbf{A}}(t) = \begin{vmatrix} 1-t & 1+i \\ 1-i & 2-t \end{vmatrix} = (1-t)(2-t) - (1-i)(1+i) = t^2 - 3t$

Eigenvalues of **A** are $\lambda_1 = 3$ and $\lambda_2 = 0$. The corresponding unitary matrix composed from eigenvectors is: $\mathbf{R} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{1-i}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$

$$\boldsymbol{R}^{-1} = \boldsymbol{R}^{H} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{pmatrix}. \text{ (Indeed } \boldsymbol{R} \text{ is self-inverse: } \boldsymbol{R}^{-1} = \boldsymbol{R}.\text{)}$$

The diagonalization goes by the product: $\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$. If we revert the order of the eigenvalues $\lambda_1 = 0$, $\lambda_2 = 3$, then we get: $\boldsymbol{S} = \begin{pmatrix} \frac{1+i}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{c} & \frac{1-i}{c} \end{pmatrix}, \ \boldsymbol{S}^{-1} = \boldsymbol{S}^{H} = \begin{pmatrix} \frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{c} & \frac{1+i}{c} \end{pmatrix} \text{ and } \boldsymbol{S}^{-1}\boldsymbol{A}\boldsymbol{S} = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}.$

Proof

By induction on *n*, the theorem holds for n = 1. Denote $A_n = A$. In \mathbb{C} , the matrix A_n has an eigenvalue λ with an eigenvector x. Scale **x** by the factor $\frac{1}{\sqrt{x^H x}}$, to get **x** satisfying $x^H x = 1$. Extend (by the fact above) \mathbf{x} to a unitary matrix \mathbf{P}_{n} . $P_n^H A_n P_n$ is Hermitian: $(P_n^H A_n P_n)^H = P_n^H A_n^H (P_n^H)^H = P_n^H A_n P_n$. Since $\mathbf{A}_n \mathbf{x} = \lambda \mathbf{x}$, the matrix $\mathbf{A}_n \mathbf{P}_n$ has $\lambda \mathbf{x}$ as the first column. As P_n is unitary, the first column of $P_n^H A_n P_n$ is $P_n^H A_n x =$ $\boldsymbol{P}_{n}^{H}(\boldsymbol{A}_{n}\boldsymbol{x}) = \boldsymbol{P}_{n}^{H}(\lambda\boldsymbol{x}) = \lambda \boldsymbol{P}_{n}^{H}\boldsymbol{x} = \lambda(1,0,\ldots,0)^{T} = (\lambda,0,\ldots,0)^{T}.$ As $P_n^H A_n P_n$ is Hermitian, $\lambda \in \mathbb{R}$ and the rest of the first row is $\mathbf{0}^T$. Hence $P_n^H A_n P_n = \begin{vmatrix} \lambda & 0' \\ 0 & A_{n-1} \end{vmatrix}$, where A_{n-1} is Hermitian.

By the induction hypothesis, $R_{n-1}^{-1}A_{n-1}R_{n-1} = D_{n-1}$ for some unitary matrix R_{n-1} and a diagonal matrix D_{n-1} .

Choose
$$\mathbf{R}_n = \mathbf{P}_n \cdot \begin{bmatrix} 1 & 0^T \\ 0 & \mathbf{R}_{n-1} \end{bmatrix}$$
, products of unitary matrices are
unitary. Now:
 $\mathbf{R}_n^{-1} \mathbf{A}_n \mathbf{R}_n = \mathbf{R}_n^H \mathbf{A}_n \mathbf{R}_n = \begin{bmatrix} 1 & 0^T \\ 0 & \mathbf{R}_{n-1}^H \end{bmatrix} \cdot \mathbf{P}_n^H \mathbf{A}_n \mathbf{P}_n \cdot \begin{bmatrix} 1 & 0^T \\ 0 & \mathbf{R}_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0^T \\ 0 & \mathbf{R}_{n-1}^H \end{bmatrix} \cdot \begin{bmatrix} \lambda & 0^T \\ 0 & \mathbf{R}_{n-1} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0^T \\ 0 & \mathbf{R}_{n-1} \end{bmatrix} = \begin{bmatrix} \lambda & 0^T \\ 0 & \mathbf{D}_{n-1} \end{bmatrix} = \mathbf{D}_n$

Theorem: Every *real symmetric* matrix A has all eigenvalues real. Also, an *orthogonal* matrix R exists, such that $R^{-1}AR$ is diagonal. By the same proof, only the eigenvector x shall be real. Such x

exists, since the system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ has all coefficients real.

Example

Given
$$\mathbf{A} = \mathbf{A}_{3} = p_{\mathbf{A}_{3}}(t) = t^{3} - 5t^{2} + 6t$$
,

$$= \begin{pmatrix} 2 & \frac{2(1+i)}{3} & \frac{-1-i}{3} \\ \frac{2(1-i)}{3} & \frac{2}{3} & \frac{2i}{3} \\ \frac{-1+i}{3} & -\frac{2i}{3} & \frac{7}{3} \end{pmatrix}$$
we scale it to $\mathbf{x} = \begin{pmatrix} 2 \\ 3, \frac{1}{3}, \frac{2}{3} \end{pmatrix}^{T}$.
We extend \mathbf{x} to unitary
 $\mathbf{P}_{3} = \begin{pmatrix} \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$ and get
Hermitian $= \begin{pmatrix} \frac{2}{9} & 0 & 0 \\ 0 & 1 & 1+i \\ 0 & 1-i & 2 \end{pmatrix}$
By induction hypothesis we diagonalize $\mathbf{R}_{2}^{-1}\mathbf{A}_{2}\mathbf{R}_{2} = \mathbf{D}_{2}$:
 $\begin{pmatrix} \frac{1}{3} & \frac{1+i}{3} \end{pmatrix}$ (1 = 1 + i) (2 = 1 + i))

$$\begin{pmatrix} \overline{\sqrt{3}} & \overline{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1 & 1+i \\ 1-i & 2 \end{pmatrix} \begin{pmatrix} \overline{\sqrt{3}} & \overline{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$$

For
$$\mathbf{R}_{3} = \mathbf{P}_{3} \cdot \boxed{\frac{1}{0} \frac{0^{T}}{\mathbf{R}_{2}}} = \begin{pmatrix} \frac{2}{3} \frac{-3+i}{3\sqrt{3}} \frac{-1-2i}{3\sqrt{3}} \\ \frac{1}{3} \frac{2i}{3\sqrt{3}} \frac{4+2i}{3\sqrt{3}} \\ \frac{2}{3} \frac{3-2i}{3\sqrt{3}} \frac{-1+i}{3\sqrt{3}} \end{pmatrix}$$
 then holds: $\mathbf{R}_{3}^{-1}\mathbf{A}_{3}\mathbf{R}_{3} = \mathbf{D}_{3} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$