Similar matrices

The matrix of a linear map f on V is not unique, since it depends on the basis. Matrices of the same map, but w.r.t. different bases shall have the same eigenvalues.

$$
\begin{aligned}
& {[f]_{X X}=[i d]_{Y X}[f]_{Y Y}[i d]_{X Y} } \\
{[f(u)]_{X} } & =[f]_{X X}[u]_{X} \\
& =[i d]_{Y X}[f(u)]_{Y}=[i d]_{Y X}[f]_{Y Y}[u]_{Y} \\
& =[i d]_{Y X}[f]_{Y Y}[i d]_{X Y}[u]_{X}
\end{aligned}
$$

Note that $[i d]_{Y X}=[i d]_{X Y}^{-1}$

Similar matrices

The matrix of a linear map f on V is not unique, since it depends on the basis. Matrices of the same map, but w.r.t. different bases shall have the same eigenvalues.

$$
[f]_{X X}=[i d]_{Y X}[f]_{Y Y}[i d]_{X Y}
$$

Definition Matrices $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{K}^{n \times n}$ are similar if there exists a regular matrix R such that $A=R^{-1} B R$.

Observation: If \boldsymbol{A} is similar to \boldsymbol{B}, i.e. $\boldsymbol{B}=\boldsymbol{R} \boldsymbol{A} \boldsymbol{R}^{-1}$, and an eigenvalue λ corresponds to an eigenvector \boldsymbol{x} in \boldsymbol{A}, then λ is also an eigenvalue of \boldsymbol{B} and corresponds here to $\boldsymbol{R} \boldsymbol{x}$.
Proof: For $\boldsymbol{y}=\boldsymbol{R} \boldsymbol{x}$ holds: $\boldsymbol{B y}=\boldsymbol{R} \boldsymbol{A} \boldsymbol{R}^{-1} \boldsymbol{R} \boldsymbol{x}=\boldsymbol{R} \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{R} \boldsymbol{x}=\lambda \boldsymbol{y}$.
Observation: If $\boldsymbol{B}=\boldsymbol{R} \boldsymbol{A} \boldsymbol{R}^{-1}$ then $p_{\boldsymbol{B}}(t)=p_{\boldsymbol{A}}(t)$.
Proof: $p_{\boldsymbol{B}}(t)=\operatorname{det}(\boldsymbol{B}-t \boldsymbol{I})=\operatorname{det}\left(\boldsymbol{R A} \boldsymbol{R}^{-1}-\boldsymbol{R}(t \boldsymbol{I}) \boldsymbol{R}^{-1}\right)=$ $\operatorname{det}\left(\boldsymbol{R}(\boldsymbol{A}-t \boldsymbol{I}) \boldsymbol{R}^{-1}\right)=\operatorname{det}(\boldsymbol{R}) \operatorname{det}(\boldsymbol{A}-t \boldsymbol{I}) \operatorname{det}\left(\boldsymbol{R}^{-1}\right)=p_{\boldsymbol{A}}(t)$

Example - a linear map in the plane

Does the following linear map have a better description?

Characteristic polynomial:

$$
p_{[f]_{\kappa K}}(t)=\left|\begin{array}{cc}
-t & 2 \\
-1 & 3-t
\end{array}\right|=t^{2}-3 t+2=(t-1)(t-2)
$$

The eigenvalue $\lambda_{1}=1$ has eigenvector $\boldsymbol{x}_{1}=(2,1)^{T}$, and the eigenvalue $\lambda_{2}=2$ has eigenvector $x_{2}=(1,1)^{T}$.

With respect to the new basis $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\}=\left\{(2,1)^{T},(1,1)^{T}\right\}$ the matrix of the same linear map f is diagonal:
$[f]_{X X}=[i d]_{K X}[f]_{K K}[i d]_{X K}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)^{-1}\left(\begin{array}{cc}0 & 2 \\ -1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$

Less formally: the plane is fixed along the line through x_{1} and twice stretched along the line through \boldsymbol{x}_{2}.

Observe that the eigenvalues and eigenvectors are preserved.

Algebraic and geometric multiplicity

Observation: If a basis X contains an eigenvector \boldsymbol{x} of f, then the coordinate corresponding to \boldsymbol{x} is scaled by λ under f. In matrix terms: $[f]_{X X}$ contains in the column corresponding to x only λ at the diagonal and otherwise zeroes.

Proof: When an eigenvector \boldsymbol{u} is the i-th vector of a basis X, then the i-th column of $[f]_{X X}$ is $[f(\boldsymbol{u})]_{X}=[\lambda \boldsymbol{u}]_{X}=\lambda[\boldsymbol{u}]_{X}=\lambda \boldsymbol{e}^{i}$.

Algebraic and geometric multiplicity

Observation: If a basis X contains an eigenvector \boldsymbol{x} of f, then the coordinate corresponding to \boldsymbol{x} is scaled by λ under f. In matrix terms: $[f]_{X X}$ contains in the column corresponding to \boldsymbol{x} only λ at the diagonal and otherwise zeroes.

Theorem: The geometric multiplicity of an eigenvalue λ of a matrix \boldsymbol{A} is smaller or equal to its algebraic multiplicity.

Proof: View $\boldsymbol{A} \in \mathbb{K}^{n \times n}$ as the matrix of a linear map $f: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ w.r.t. the standard basis K, i.e. $\boldsymbol{A}=[f]_{K, K}$.

Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ be a basis of the space of eigenvectors of λ, i.e. k is its geometric multiplicity.
Extend this basis to a basis X of \mathbb{K}^{n}.
Then $[f]_{X, X}=[i d]_{X, K}^{-1} \boldsymbol{A}[i d]_{X, K}$ is similar to \boldsymbol{A}. Also $[f]_{X, X}$ has on the first k columns λ at the diagonal and otherwise zeroes.
Hence $(\lambda-t)^{k}$ divides $p_{[f]_{X, X}}(t)$. Since \boldsymbol{A} and $[f]_{X, X}$ have equal characteristic polynomials, λ has algebraic multiplicity at least k.

Example

$\boldsymbol{A}=\left(\begin{array}{lll}-1 & 7 & -5 \\ -2 & 7 & -4 \\ -1 & 3 & -1\end{array}\right) \begin{aligned} & p_{\boldsymbol{A}}(t)=-t^{3}+5 t^{2}-8 x+4=(t-2)^{2}(t-1) \\ & \text { eigenvalues are: } 2 \text { of algebraic multiplicity } 2 \\ & \text { and 1 of algebraic multiplicity } 1 .\end{aligned}$
$\boldsymbol{A}-2 \mathbf{I}_{3}=\left(\begin{array}{lll}-3 & 7 & -5 \\ -2 & 5 & -4 \\ -1 & 3 & -3\end{array}\right) \sim \sim\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right)$
The eigenvalue 2 has in \boldsymbol{A} geometric multiplicity only 1 .
We extend the eigenvector $(3,2,1)^{T}$ for 2 to a basis X, e.g. $X=\left\{(3,2,1)^{T},(2,2,1)^{T},(1,1,1)^{T}\right\}$.

The matrix \boldsymbol{A} is similar to $[i d]_{X, K}^{-1} \boldsymbol{A}[i d]_{X, K}=$
$=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)^{-1}\left(\begin{array}{lll}-1 & 7 & -5 \\ -2 & 7 & -4 \\ -1 & 3 & -1\end{array}\right)\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$

Example

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{lll}
-1 & 7 & -5 \\
-2 & 7 & -4 \\
-1 & 3 & -1
\end{array}\right) \begin{array}{l}
p_{\boldsymbol{A}}(t)=-t^{3}+5 t^{2}-8 x+4=(t-2)^{2}(t-1) \\
\text { eigenvalues are: } 2 \text { of algebraic multiplicity } 2 \\
\text { and } 1 \text { of algebraic multiplicity } 1 .
\end{array} \\
& \boldsymbol{A}-2 \boldsymbol{I}_{3}=\left(\begin{array}{lll}
-3 & 7 & -5 \\
-2 & 5 & -4 \\
-1 & 3 & -3
\end{array}\right) \sim \sim\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The eigenvalue 2 has in \boldsymbol{A} geometric multiplicity only 1 .
Compare with,
$\boldsymbol{B}=\left(\begin{array}{ccc}2 & 1 & -2 \\ 0 & 3 & -2 \\ 0 & 1 & 0\end{array}\right)$
$\boldsymbol{B}-2 \boldsymbol{I}_{\mathbf{3}}=\left(\begin{array}{lll}0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2\end{array}\right) \sim \sim\left(\begin{array}{ccc}0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
the eigenvalue 2 has in \boldsymbol{B} geometric multiplicity 2 .

Example

$\left(\begin{array}{rrr}-1 & 7 & -5 \\ -2 & 7 & p_{\boldsymbol{A}}(t)=-t^{3}+5 t^{2}-8 x+4=(t-2)^{2}(t-1)\end{array}\right.$
$\boldsymbol{A}=\left(\begin{array}{rrr}-2 & 7 & -4 \\ 1 & 3 & 1\end{array}\right)$ eigenvalues are: 2 of algebraic multiplicity 2
$\left(\begin{array}{lll}-1 & 3 & -1\end{array}\right)$ and 1 of algebraic multiplicity 1.
$\boldsymbol{A}-2 \mathbf{I}_{3}=\left(\begin{array}{lll}-3 & 7 & -5 \\ -2 & 5 & -4 \\ -1 & 3 & -3\end{array}\right) \sim \sim\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right)$
The eigenvalue 2 has in \boldsymbol{A} geometric multiplicity only 1 .
Compare with,
$\boldsymbol{B}=\left(\begin{array}{ccc}2 & 1 & -2 \\ 0 & 3 & -2 \\ 0 & 1 & 0\end{array}\right)$ has the same characteristic polynomial
W.r.t. (by coincidence the same) basis X we get $[i d]_{X, K}^{-1} \boldsymbol{B}[i d]_{X, K}=$

$$
=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)^{-1}\left(\begin{array}{ccc}
2 & 1 & -2 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Diagonalization

Observation: A matrix $\boldsymbol{A} \in \mathbb{K}^{n \times n}$ is similar to a diagonal matrix if and only if \mathbb{K}^{n} has a basis consisting of eigenvectors of \boldsymbol{A}.

Proof: $\boldsymbol{A R}=\boldsymbol{R} \boldsymbol{D}$ with diagonal matrix \boldsymbol{D}, iff for every i there exists a vector \boldsymbol{x} (the i-th column of \boldsymbol{R}) such that $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}=d_{i i} \boldsymbol{x}$.

Diagonalization

Observation: A matrix $\boldsymbol{A} \in \mathbb{K}^{n \times n}$ is similar to a diagonal matrix if and only if \mathbb{K}^{n} has a basis consisting of eigenvectors of \boldsymbol{A}.

Proof: $\boldsymbol{A R}=\boldsymbol{R} \boldsymbol{D}$ with diagonal matrix \boldsymbol{D}, iff for every i there exists a vector \boldsymbol{x} (the i-th column of \boldsymbol{R}) such that $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}=d_{i i} \boldsymbol{x}$.

Definition: A matrix similar to a diagonal matrix is diagonalizable.
Corollary: If a square matrix of order n has n distinct eigenvalues, then it is diagonalizable.

Corollary: When $p_{\boldsymbol{A}}(t)=\prod_{i}\left(t-\lambda_{i}\right)^{r_{i}}$, then:
\boldsymbol{A} is diagonalizable $\Longleftrightarrow \operatorname{dim}\left(\operatorname{Ker}\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right)\right)=r_{i}$
Corollary: If $\boldsymbol{A}=\boldsymbol{R}^{-1} \boldsymbol{D} \boldsymbol{R}$, then for any $k: \boldsymbol{A}^{k}=\boldsymbol{R}^{-1} \boldsymbol{D}^{k} \boldsymbol{R}$. $\boldsymbol{A}^{k}=\left(\boldsymbol{R}^{-1} \boldsymbol{D} \boldsymbol{R}\right)^{k}=\boldsymbol{R}^{-1} \boldsymbol{D} R R^{-1} \boldsymbol{D} R R^{-1} \cdots R^{-1} \boldsymbol{D} \boldsymbol{R}=\boldsymbol{R}^{-1} \boldsymbol{D}^{k} \boldsymbol{R}$.

