Similar matrices

The matrix of a linear map f on V is not unique, since it depends on the basis. Matrices of the same map, but w.r.t. different bases shall have the same eigenvalues.

 $[f]_{XX} = [id]_{YX}[f]_{YY}[id]_{XY}$

$$[f(u)]_X = [f]_{XX}[u]_X$$

= $[id]_{YX}[f(u)]_Y = [id]_{YX}[f]_{YY}[u]_Y$
= $[id]_{YX}[f]_{YY}[id]_{XY}[u]_X$
Note that $[id]_{YX} = [id]_{XY}^{-1}$

Similar matrices

The matrix of a linear map f on V is not unique, since it depends on the basis. Matrices of the same map, but w.r.t. different bases shall have the same eigenvalues.

 $[f]_{XX} = [id]_{YX}[f]_{YY}[id]_{XY}$

Definition Matrices $A, B \in \mathbb{K}^{n \times n}$ are similar if there exists a regular matrix R such that $A = R^{-1}BR$.

Observation: If **A** is similar to **B**, i.e. $B = RAR^{-1}$, and an eigenvalue λ corresponds to an eigenvector **x** in **A**, then λ is also an eigenvalue of **B** and corresponds here to **Rx**.

Proof: For y = Rx holds: $By = RAR^{-1}Rx = RAx = \lambda Rx = \lambda y$.

Observation: If $B = RAR^{-1}$ then $p_B(t) = p_A(t)$.

Proof: $p_{\boldsymbol{B}}(t) = \det(\boldsymbol{B} - t\boldsymbol{I}) = \det(\boldsymbol{R}\boldsymbol{A}\boldsymbol{R}^{-1} - \boldsymbol{R}(t\boldsymbol{I})\boldsymbol{R}^{-1}) = \det(\boldsymbol{R}(\boldsymbol{A} - t\boldsymbol{I})\boldsymbol{R}^{-1}) = \det(\boldsymbol{R})\det(\boldsymbol{A} - t\boldsymbol{I})\det(\boldsymbol{R}^{-1}) = p_{\boldsymbol{A}}(t)$

Example — a linear map in the plane

Does the following linear map have a better description?

Characteristic polynomial:

$$p_{[f]_{KK}}(t) = \begin{vmatrix} -t & 2 \\ -1 & 3-t \end{vmatrix} = t^2 - 3t + 2 = (t-1)(t-2)$$

The eigenvalue $\lambda_1 = 1$ has eigenvector $\mathbf{x}_1 = (2, 1)^T$, and the eigenvalue $\lambda_2 = 2$ has eigenvector $\mathbf{x}_2 = (1, 1)^T$.

With respect to the new basis $X = \{x_1, x_2\} = \{(2, 1)^T, (1, 1)^T\}$ the matrix of *the same* linear map *f* is *diagonal*:

 $[f]_{XX} = [id]_{KX}[f]_{KK}[id]_{XK} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

Less formally: the plane is fixed along the line through x_1 and twice stretched along the line through x_2 .

Observe that the eigenvalues and eigenvectors are preserved.

Algebraic and geometric multiplicity

Observation: If a basis X contains an eigenvector x of f, then the coordinate corresponding to x is scaled by λ under f. In matrix terms: $[f]_{XX}$ contains in the column corresponding to x only λ at the diagonal and otherwise zeroes.

Proof: When an eigenvector \boldsymbol{u} is the *i*-th vector of a basis X, then the *i*-th column of $[f]_{XX}$ is $[f(\boldsymbol{u})]_X = [\lambda \boldsymbol{u}]_X = \lambda [\boldsymbol{u}]_X = \lambda \boldsymbol{e}^i$.

Algebraic and geometric multiplicity

Observation: If a basis X contains an eigenvector x of f, then the coordinate corresponding to x is scaled by λ under f. In matrix terms: $[f]_{XX}$ contains in the column corresponding to x only λ at the diagonal and otherwise zeroes.

Theorem: The geometric multiplicity of an eigenvalue λ of a matrix **A** is smaller or equal to its algebraic multiplicity.

Proof: View $\mathbf{A} \in \mathbb{K}^{n \times n}$ as the matrix of a linear map $f : \mathbb{K}^n \to \mathbb{K}^n$ w.r.t. the standard basis K, i.e. $\mathbf{A} = [f]_{K,K}$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ be a basis of the space of eigenvectors of λ , i.e. k is its geometric multiplicity.

Extend this basis to a basis X of \mathbb{K}^n .

Then $[f]_{X,X} = [id]_{X,K}^{-1} \mathbf{A}[id]_{X,K}$ is similar to **A**. Also $[f]_{X,X}$ has on the first k columns λ at the diagonal and otherwise zeroes.

Hence $(\lambda - t)^k$ divides $p_{[f]_{X,X}}(t)$. Since **A** and $[f]_{X,X}$ have equal characteristic polynomials, λ has algebraic multiplicity at least k.

Example

 $\mathbf{A} = \begin{pmatrix} -1 & 7 & -5 \\ -2 & 7 & -4 \\ -1 & 3 & -1 \end{pmatrix} \begin{array}{l} p_{\mathbf{A}}(t) = -t^3 + 5t^2 - 8x + 4 = (t-2)^2(t-1) \\ \text{eigenvalues are: } 2 \text{ of algebraic multiplicity } 2 \\ \text{and } 1 \text{ of algebraic multiplicity } 1. \end{array}$

$$\mathbf{A} - 2\mathbf{I}_3 = \begin{pmatrix} -3 & 7 & -5 \\ -2 & 5 & -4 \\ -1 & 3 & -3 \end{pmatrix} \sim \sim \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

The eigenvalue 2 has in **A** geometric multiplicity only 1. We extend the eigenvector $(3,2,1)^T$ for 2 to a basis X, e.g. $X = \{(3,2,1)^T, (2,2,1)^T, (1,1,1)^T\}.$

The matrix **A** is similar to $[id]_{X,K}^{-1} A[id]_{X,K} =$

$$= \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 7 & -5 \\ -2 & 7 & -4 \\ -1 & 3 & -1 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Example

 $\mathbf{A} = \begin{pmatrix} -1 & 7 & -5 \\ -2 & 7 & -4 \\ -1 & 3 & -1 \end{pmatrix} \begin{array}{l} p_{\mathbf{A}}(t) = -t^3 + 5t^2 - 8x + 4 = (t-2)^2(t-1) \\ \text{eigenvalues are: } 2 \text{ of algebraic multiplicity } 2 \\ \text{and } 1 \text{ of algebraic multiplicity } 1. \end{array}$

$$\mathbf{A} - 2\mathbf{I}_3 = \begin{pmatrix} -3 & 7 & -5 \\ -2 & 5 & -4 \\ -1 & 3 & -3 \end{pmatrix} \sim \sim \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

The eigenvalue 2 has in **A** geometric multiplicity only 1.

Compare with, $B = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}$ has the same characteristic polynomial $P_B(t) = -t^3 + 5t^2 - 8x + 4 = (t-2)^2(t-1)$ and the same eigenvalues, i.e. 2 of algebraic multiplicity 2 and 1 of algebraic multiplicity 1. $B - 2I_3 = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2 \end{pmatrix} \sim \sim \begin{pmatrix} 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

the eigenvalue 2 has in **B** geometric multiplicity 2.

Example

 $\mathbf{A} = \begin{pmatrix} -1 & 7 & -5 \\ -2 & 7 & -4 \\ -1 & 3 & -1 \end{pmatrix} \begin{array}{l} p_{\mathbf{A}}(t) = -t^3 + 5t^2 - 8x + 4 = (t-2)^2(t-1) \\ \text{eigenvalues are: } 2 \text{ of algebraic multiplicity } 2 \\ \text{and } 1 \text{ of algebraic multiplicity } 1. \end{array}$

$$\mathbf{A} - 2\mathbf{I}_3 = \begin{pmatrix} -3 & 7 & -5 \\ -2 & 5 & -4 \\ -1 & 3 & -3 \end{pmatrix} \sim \sim \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

The eigenvalue 2 has in **A** geometric multiplicity only 1.

Compare with, $B = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix}$ has the same characteristic polynomial $p_B(t) = -t^3 + 5t^2 - 8x + 4 = (t-2)^2(t-1)$ and the same eigenvalues, i.e. 2 of algebraic multiplicity 2 and 1 of algebraic multiplicity 1.

W.r.t. (by coincidence the same) basis X we get $[id]_{X,K}^{-1}B[id]_{X,K} =$

$$= \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 1 & -2 \\ 0 & 3 & -2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Diagonalization

Observation: A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is similar to a diagonal matrix if and only if \mathbb{K}^n has a basis consisting of eigenvectors of \mathbf{A} .

Proof: AR = RD with diagonal matrix D, iff for every i there exists a vector x (the *i*-th column of R) such that $Ax = \lambda x = d_{ii}x$.

Diagonalization

Observation: A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is similar to a diagonal matrix if and only if \mathbb{K}^n has a basis consisting of eigenvectors of \mathbf{A} .

Proof: AR = RD with diagonal matrix D, iff for every i there exists a vector x (the *i*-th column of R) such that $Ax = \lambda x = d_{ii}x$.

Definition: A matrix similar to a diagonal matrix is diagonalizable.

Corollary: If a square matrix of order n has n distinct eigenvalues, then it is diagonalizable.

Corollary: When $p_{\mathbf{A}}(t) = \prod_i (t - \lambda_i)^{r_i}$, then:

A is diagonalizable $\iff \dim(\operatorname{Ker}(\mathbf{A} - \lambda_i \mathbf{I})) = r_i$

Corollary: If $\mathbf{A} = \mathbf{R}^{-1}\mathbf{D}\mathbf{R}$, then for any $k : \mathbf{A}^k = \mathbf{R}^{-1}\mathbf{D}^k\mathbf{R}$. $\mathbf{A}^k = (\mathbf{R}^{-1}\mathbf{D}\mathbf{R})^k = \mathbf{R}^{-1}\mathbf{D}\mathbf{R}\mathbf{R}^{-1}\mathbf{D}\mathbf{R}\mathbf{R}^{-1}\cdots\mathbf{R}^{-1}\mathbf{D}\mathbf{R} = \mathbf{R}^{-1}\mathbf{D}^k\mathbf{R}$.