
Similar matrices
The matrix of a linear map f on V is not unique, since it depends
on the basis. Matrices of the same map, but w.r.t. different bases
shall have the same eigenvalues.

[f ]XX = [id ]YX [f ]YY [id ]XY

[f (u)]X = [f ]XX [u]X
= [id ]YX [f (u)]Y = [id ]YX [f ]YY [u]Y
= [id ]YX [f ]YY [id ]XY [u]X

Note that [id ]YX = [id ]−1
XY

Definition Matrices A,B ∈ Kn×n are similar if there exists a
regular matrix R such that A = R−1BR.
Observation: If A is similar to B, i.e. B = RAR−1,
and an eigenvalue λ corresponds to an eigenvector x in A,
then λ is also an eigenvalue of B and corresponds here to Rx.
Proof: For y = Rx holds: By = RAR−1Rx = RAx = λRx = λy .
Observation: If B = RAR−1 then pB(t) = pA(t).
Proof: pB(t) = det(B − tI) = det(RAR−1 − R(tI)R−1) =
det(R(A− tI)R−1) = det(R) det(A− tI) det(R−1) = pA(t)
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Example — a linear map in the plane
Does the following linear map have a better description?

e1

e2

f (e2)

f (e1)

[f ]KK =

(
0 2
−1 3

)

Characteristic polynomial:

p[f ]KK (t) =
∣∣∣∣∣−t 2
−1 3− t

∣∣∣∣∣ = t2 − 3t + 2 = (t − 1)(t − 2)

The eigenvalue λ1 = 1 has eigenvector x1 = (2, 1)T , and
the eigenvalue λ2 = 2 has eigenvector x2 = (1, 1)T .



With respect to the new basis X = {x1, x2} = {(2, 1)T , (1, 1)T}
the matrix of the same linear map f is diagonal:

[f ]XX = [id ]KX [f ]KK [id ]XK =
(
2 1
1 1

)−1(
0 2
−1 3

)(
2 1
1 1

)
=
(
1 0
0 2

)

x1

x2
= f (x1)

[f ]XX =

(
1 0
0 2

)f (x2)

Less formally: the plane is fixed along the line through x1
and twice stretched along the line through x2.

Observe that the eigenvalues and eigenvectors are preserved.



Algebraic and geometric multiplicity
Observation: If a basis X contains an eigenvector x of f , then the
coordinate corresponding to x is scaled by λ under f .
In matrix terms: [f ]XX contains in the column corresponding to x
only λ at the diagonal and otherwise zeroes.

Proof: When an eigenvector u is the i-th vector of a basis X ,
then the i-th column of [f ]XX is [f (u)]X = [λu]X = λ[u]X = λe i .

Theorem: The geometric multiplicity of an eigenvalue λ
of a matrix A is smaller or equal to its algebraic multiplicity.

Proof: View A ∈ Kn×n as the matrix of a linear map f : Kn → Kn

w.r.t. the standard basis K , i.e. A = [f ]K ,K .
Let u1, . . . ,uk be a basis of the space of eigenvectors of λ, i.e. k is
its geometric multiplicity.
Extend this basis to a basis X of Kn.
Then [f ]X ,X = [id ]−1

X ,K A[id ]X ,K is similar to A. Also [f ]X ,X has on
the first k columns λ at the diagonal and otherwise zeroes.
Hence (λ− t)k divides p[f ]X ,X (t). Since A and [f ]X ,X have equal
characteristic polynomials, λ has algebraic multiplicity at least k.
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Example

A =

−1 7 −5
−2 7 −4
−1 3 −1

 pA(t) = −t3 + 5t2− 8x + 4 = (t − 2)2(t − 1)
eigenvalues are: 2 of algebraic multiplicity 2
and 1 of algebraic multiplicity 1.

A− 2I3 =

−3 7 −5
−2 5 −4
−1 3 −3

 ∼∼
1 0 −3
0 1 −2
0 0 0


The eigenvalue 2 has in A geometric multiplicity only 1.
We extend the eigenvector (3, 2, 1)T for 2 to a basis X ,
e.g. X = {(3, 2, 1)T , (2, 2, 1)T , (1, 1, 1)T}.

The matrix A is similar to [id ]−1
X ,K A[id ]X ,K =

=

3 2 1
2 2 1
1 1 1


−1−1 7 −5

−2 7 −4
−1 3 −1


3 2 1
2 2 1
1 1 1

 =

2 1 0
0 2 0
0 0 1



Compare with,

B =

2 1 −2
0 3 −2
0 1 0


has the same characteristic polynomial
pB(t) = −t3 + 5t2− 8x + 4 = (t − 2)2(t − 1)
and the same eigenvalues, i.e. 2 of algebraic
multiplicity 2 and 1 of algebraic multiplicity 1.

W.r.t. (by coincidence the same) basis X we get [id ]−1
X ,K B[id ]X ,K =

=

3 2 1
2 2 1
1 1 1


−12 1 −2

0 3 −2
0 1 0


3 2 1
2 2 1
1 1 1

 =

2 0 0
0 2 0
0 0 1
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Diagonalization

Observation: A matrix A ∈ Kn×n is similar to a diagonal matrix if
and only if Kn has a basis consisting of eigenvectors of A.

Proof: AR = RD with diagonal matrix D, iff for every i there
exists a vector x (the i-th column of R) such that Ax = λx = diix.

λx

x

R

A

λ

D

R

0

0

λxx

A = RDR−1 ⇐⇒ AR = RD ⇐⇒ R−1AR = D

Definition: A matrix similar to a diagonal matrix is diagonalizable.

Corollary: If a square matrix of order n has n distinct eigenvalues,
then it is diagonalizable.

Corollary: When pA(t) =
∏

i(t − λi)ri , then:

A is diagonalizable ⇐⇒ dim(Ker(A− λi I)) = ri

Corollary: If A = R−1DR, then for any k : Ak = R−1DkR.
Ak = (R−1DR)k = R−1DRR−1DRR−1 · · ·R−1DR = R−1DkR.
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