Eigenvalues and eigenvectors

Definition: For a vector space V over a field K and a linear map
f:V — V, the eigenvalue of f is any A € K

for which exists a vector u € V' \ 0 such that f(u) = Au.

The eigenvector corresponding to an eigenvalue A

is any vector u such that f(u) = \u.

If V is of finite dimension n, then f can be represented
by the matrix A = [f]xx € K™ w.r.t. some basis X of V.

This way we get eigenvalues A € K and eigenvectors x € K"
of matrices — these shall satisfy Ax = Ax.

The collection of all eigenvalues of a matrix is its spectrum.



Examples — a linear map in the plane R?

The axis symmetry by the axis of the 2nd and 4th quadrant
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The rotation by the right angle
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No real eigenvalues nor eigenvectors exist.

The projection onto the first coordinate
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Scaling by the factor 2
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A1 =2 Every vector is an eigenvector.

A linear map given by a matrix

k()
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Eigenvectors and eigenvalues of a diagonal matrix D

The equation

dp 0 ... O x1 dy1x1
T X2 dr2X0
Dx — 0 doo : _ : ~
: . . 0 : :
0 . 0 dnn Xn dn,nXn

is solved by the following eigenvalues and eigenvectors:

A=d1and x =e! = (1,0,
A= dhyand x =e€?> = (0,1

)

0,...,0)7,
0,...,0)7,
A=d,,and x=e"=(0,0,...,0,1)7.

Hence the eigenvalues of D are the elements on the diagonal,
and the eigenvectors form the standard basis of the space K”.



Properties of eigenvalues and eigenvectors

Observation: Eigenvectors corresponding to the same eigenvalue
form a subspace.

Proof: Consider an eigenvalue A of a linear map f and the set
U={ueV:f(u)=Au}
For any u, v € U we get:
» f(au) = af (u) = alu = \(au),
> f(u+v)="~f(u)+f(v)=Au+v=X\Nu+v).
Hence U is closed under addition and scalar multiples,

i.e. a subspace of V.

Definition: The geometric multiplicity of an eigenvalue
is the dimension of the space of its eigenvectors.



Properties of eigenvalues and eigenvectors

Theorem: Let f : V — V be a linear map and A1,..., A\, be
distinct eigenvalues of f and uy, ..., u, the corresponding
nontrivial eigenvectors. Then uy, ..., uy are linearly independent.

Proof: Assume for a contradiction, that k is the smallest number
for which exist \1,...,A\x and uy, ..., ux contradicting the claim,

k
i.e. there are a1, ...,a, € K\ 0 such that > a;u; = 0.
i=1

k k
We express 0 in two ways: 0 = \0 = A\, > aju; = > A\caju;,
i=1 i=1

K K K
and also: 0 = f(0) = f (Z a,-u,-) = > aif(u;)) = Y Naju;,
i=1 i=1 i=1

k k
hence: 0 =0—-0 = Z )\,-a,-u; — Z )\ka,-u; = Z (/\,' — )\k)a,-u;.
i=1 i=1 i=1
As \; # Ak we get (\j — A\g)a;i # 0. Already uy, ..., ux_1 are
linearly dependent — a contradiction with the minimality of k.



Properties of eigenvalues and eigenvectors

Theorem: Let f : V — V be a linear map and Aq,..., A, be
distinct eigenvalues of f and uy, ..., u, the corresponding
nontrivial eigenvectors. Then uy, ..., ux are linearly independent.

Corollary: A matrix of order n may have at most n distinct
eigenvalues.



Characteristic polynomial

Definition: The characteristic polynomial of a matrix A € K"™*"
is pa(t) = det(A — tl,)

Theorem: A number )\ € K is an eigenvalue of a matrix A € K"*"
if and only if X is a root of its characteristic polynomial pa(t).

Proof: A is an eigenvalue of A <

< dx e K"\ 0: Ax = A\x

& IxeK"\0:0=Ax— A x =Ax — M,x = (A— \l,)x
& the matrix A — Al, is singular

< 0 =det(A— ) = pa()N)



Eigenvalues — roots of the characteristic polynomial

Zero matrix:
0 0 0 -t 0 0
0 0 0 0 -t 0
o.=|. . | em=|. | = (1)
0 0 ... O 0 o ... -t

The matrix 0, has only single eigenvalue 0 with multiplicity n.

A diagonal or a triangular matrix (also the identity matrix /,):

a1 k... * a1 —t * *
0 a2 .- * 0 ao—t ... *
A= pa(t) =| .
0 0 an.n 0 0 ann—t
n .
= 1[(ai;i—t) The eigenvalues of A are a1 1,a22,...,ann.
i=1



The matrix with ones:

1 1 1 11—t 1 1
11 1 11—t
1, = : p1,(t) =]
: 1

11 1 1 1 1-t

—t 0 0 t —t 0 0

0 -t 0 -t

0 0 -t t 0 0 —t 0

1 1 1-—t¢ 1 1 n—t

= (=" Y- 1)

The matrix 1, has the eigenvalue 0 of multiplicity n — 1
and the eigenvalue n of multiplicity 1.



Observation: A polynomial
(t" + by_1t" L+ -+ byt + bo)(—1)"*!
is the characteristic polynomial of the matrix:

00 ... 0 —b
10 ... 0 —bh
01 ... 0 —-b
0 0 ... 1 —byp
Proof: By expansion along the last column of:
-t 0 ... 0 —bg
1 -t . 0 —b;
o 1 . 0 —by
0O ... 0 1 —b,1-—t

(Also we can expand along the first row and reslove the

recurrence. )



Computing eigenvalues and eigenvectors

. . 1 2 0
Determine eigenvalues and A—l3 -1 3
eigenvectors of the matrix 1 _2 o
Characteristic 1t 2 0

olynomial: Pa(t) = 3 “iot 3 1=
POy ' 1 22—t

=(1—t)(-1-t)2—t)+6+6(1—t)—6(2—1t) = —t3+2t2+t—2
The eigenvalues of A are the roots of pa(t), i.e. 2, 1 and —1.

The eigenvector x; for A\; = 2 is any solution of (A — A\1l3)x; =0

1-2 2 0 -1 2 0
A-\b=| 3 —-1-2 3 |=|3 -3 3 N(é _12 (1’)
1 -2 2-2 1 -2 0

The solution x; is any scalar multiple of the vector (2,1, —1)7.
The eigenvalue \; = 1 yields the eigenvector xo = (—1,0,1)", and
the eigenvalue A3 = —1 yields the eigenvector x3 = (—1,1,1)7.



Coefficients of the characteristic polynomial

Observation: For pa(t) = det(A — tl,) = > b;t’ it holds:

| 2

| 2

>

i=0
b, = (—1)" ... only the product along the diagonal in
A — tl, may yield t", each its factor of t has coefficient —1.

bo = det(A) ... substitute t = 0 into pa(t)
bn 1 — ( )n ! Z all

. the term "1 couId be obtained only from the product of t

linear terms a; ; — t that are on the diagonal of A — tl, by

choosing n — 1 times the term —t and once each of a; ;.

There are n choices, where summands a; ; in the coefficient
n

by—1 = (=1)""1 3" a;; correspond to distinct choices.

i=1



Coefficients of the characteristic polynomial

Observation: For pa(t) = det(A — tl,) = > b;t’ it holds:
i=0

» b, =(—1)"... only the product along the diagonal in
A — tl, may yield t", each its factor of t has coefficient —1.

» by = det(A) ... substitute t = 0 into pa(t)
> b1 =(—1)"1Y a;
i=1

Review: When K is algebraically closed, one may factorize the
characteristic polynomial into linear factors with roots/eigenvalues:
pA(t) = ()\1 — t)rl(/\g — l’)r2 L. ()\k — t)r" with r{ + -+ r, = n.
The exponent r; is the algebraic multiplicity of the eigenvalue A;.



Coefficients of the characteristic polynomial

Observation: For pa(t) = det(A — tl,) = > b;t’ it holds:
i=0
» b, =(—1)"... only the product along the diagonal in
A — tl, may yield t", each its factor of t has coefficient —1.

» by = det(A) ... substitute t = 0 into pa(t)
> b1 =(—1)"1Y a;
i=1

Moreover, if the characteristic polynomial has a decomposition
pA(t) = ()\1 — t)rl()\g — t)r2 - ()\k — t)r", n—+---+ re = nthen:

K
» by = det(A) = [[ A7 ... again substitute t = 0 into pa(t)
i=1

> bn—l _ (71)n71
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... analogously from (A; — )" (Ap — t)2 ... (Ax — )"k,



Application — eigenvalues of rabbit populations

Assume that the rabbits’ breeding is described by a simple law, e.g.
that this year's number of rabbits is the sum of these numbers of
the past two years.

Let F; denotes the number of rabbits in year t. We get the
recurrent formula for Fibbonacci numbers F; = F;_1 + Fs_».

We may ask, how the ratio % develops — whether it has a limit,
or whether it oscillates, or whether it becomes stable.

The same in the language of matrices and vector spaces:
Consider the space R?, then the linear map f : R> — R? given by

Fr\ (11 Fi_1
Fii) \1 0) \Fi>
describes the same recurrent relation.
E.g., if we start with a single rabbit, we get the sequence

4000606



. F, e
The stable ratio Fffl, have vectors x = (F t > satisfying:
- t—1

f(x) = G é)x:/\x

for some A € R. (Vectors x and Ax have the same ratio.)

The matrix (1 é) has two eigenvalues, namely:

A = 15 . — 1+2‘/§ ... the vector's elements grow
2 1 with every iteration
1-v5 ... here the sign changes with
A2 = 1_2\/5 X = ( i ) every iteration, and the limit is
the zero vector



Solving a homogeneous system of first order linear
differential equations with constant coefficients

yi = ayn + ... + aunys a1l ... adin
: : yield A =
y;; = an,1y1 + ...+ an,nYn dn1l --- dnn
For an eigenvalue )\ and an eigenvector (ky, ..., k,)" of A, the n-tuple of
functions y;(x) := k;e** solves the original system:
vi (kpe™) Akq e ky ke
) (kne™)’ Akpe™* kn k,
arikie™ 4.+ apnk.e™ aLiyr +...+ ainys
an,lklekx +...+ an,nkne)\x a1yttt annyn

Note that other eigenvalues yield another sets of particular solutions.
The overall solution is any linear combination of particular solutions that
satisfies all boundary conditions.



