Eigenvalues and eigenvectors

Definition: For a vector space V over a field \mathbb{K} and a linear map $f: V \rightarrow V$, the eigenvalue of f is any $\lambda \in \mathbb{K}$ for which exists a vector $\boldsymbol{u} \in V \backslash \mathbf{0}$ such that $f(\boldsymbol{u})=\lambda \boldsymbol{u}$.
The eigenvector corresponding to an eigenvalue λ is any vector \boldsymbol{u} such that $f(\boldsymbol{u})=\lambda \boldsymbol{u}$.

If V is of finite dimension n, then f can be represented by the matrix $\boldsymbol{A}=[f]_{X X} \in \mathbb{K}^{n \times n}$ w.r.t. some basis X of V. This way we get eigenvalues $\lambda \in \mathbb{K}$ and eigenvectors $\boldsymbol{x} \in \mathbb{K}^{n}$ of matrices - these shall satisfy $\boldsymbol{A x}=\lambda \boldsymbol{x}$.

The collection of all eigenvalues of a matrix is its spectrum.

Examples - a linear map in the plane \mathbb{R}^{2}

The axis symmetry by the axis of the 2nd and 4th quadrant

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1
\end{aligned} \quad \begin{aligned}
& x_{1}=c \cdot(-1,1)^{\top} \\
& x_{2}=c \cdot(1,1)^{\top}
\end{aligned}
$$

The rotation by the right angle

The projection onto the first coordinate

Scaling by the factor 2

A linear map given by a matrix

$$
[f]_{K K}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

$$
\lambda_{1}=1 \quad x_{1}=c \cdot(0,1)^{\top}
$$

Eigenvectors and eigenvalues of a diagonal matrix \boldsymbol{D}

The equation

$$
\boldsymbol{D} \boldsymbol{x}=\left(\begin{array}{cccc}
d_{1,1} & 0 & \ldots & 0 \\
0 & d_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & d_{n, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
d_{1,1} x_{1} \\
d_{2,2} x_{2} \\
\vdots \\
d_{n, n} x_{n}
\end{array}\right)=\lambda \boldsymbol{x}
$$

is solved by the following eigenvalues and eigenvectors:

$$
\begin{gathered}
\lambda=d_{1,1} \text { and } \boldsymbol{x}=\boldsymbol{e}^{1}=(1,0,0, \ldots, 0)^{T}, \\
\lambda=d_{2,2} \text { and } \boldsymbol{x}=\boldsymbol{e}^{2}=(0,1,0, \ldots, 0)^{T}, \\
\vdots \\
\lambda=d_{n, n} \text { and } \boldsymbol{x}=\boldsymbol{e}^{n}=(0,0, \ldots, 0,1)^{T} .
\end{gathered}
$$

Hence the eigenvalues of \boldsymbol{D} are the elements on the diagonal, and the eigenvectors form the standard basis of the space \mathbb{K}^{n}.

Properties of eigenvalues and eigenvectors

Observation: Eigenvectors corresponding to the same eigenvalue form a subspace.

Proof: Consider an eigenvalue λ of a linear map f and the set $U=\{\boldsymbol{u} \in V: f(\boldsymbol{u})=\lambda \boldsymbol{u}\}$

For any $\boldsymbol{u}, \boldsymbol{v} \in U$ we get:

- $f(a \boldsymbol{u})=a f(\boldsymbol{u})=a \lambda \boldsymbol{u}=\lambda(\boldsymbol{a} \boldsymbol{u})$,
- $f(\boldsymbol{u}+\boldsymbol{v})=f(\boldsymbol{u})+f(\boldsymbol{v})=\lambda \boldsymbol{u}+\lambda \boldsymbol{v}=\lambda(\boldsymbol{u}+\boldsymbol{v})$.

Hence U is closed under addition and scalar multiples, i.e. a subspace of V.

Definition: The geometric multiplicity of an eigenvalue is the dimension of the space of its eigenvectors.

Properties of eigenvalues and eigenvectors

Theorem: Let $f: V \rightarrow V$ be a linear map and $\lambda_{1}, \ldots, \lambda_{k}$ be distinct eigenvalues of f and $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ the corresponding nontrivial eigenvectors. Then $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ are linearly independent. Proof: Assume for a contradiction, that k is the smallest number for which exist $\lambda_{1}, \ldots, \lambda_{k}$ and $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ contradicting the claim, i.e. there are $a_{1}, \ldots, a_{k} \in \mathbb{K} \backslash 0$ such that $\sum_{i=1}^{k} a_{i} \boldsymbol{u}_{i}=\mathbf{0}$.

We express $\mathbf{0}$ in two ways: $\mathbf{0}=\lambda_{k} \mathbf{0}=\lambda_{k} \sum_{i=1}^{k} a_{i} \boldsymbol{u}_{i}=\sum_{i=1}^{k} \lambda_{k} a_{i} \boldsymbol{u}_{i}$,
and also: $\mathbf{0}=f(\mathbf{0})=f\left(\sum_{i=1}^{k} a_{i} \boldsymbol{u}_{i}\right)=\sum_{i=1}^{k} a_{i} f\left(\boldsymbol{u}_{i}\right)=\sum_{i=1}^{k} \lambda_{i} a_{i} \boldsymbol{u}_{i}$,
hence: $\mathbf{0}=\mathbf{0}-\mathbf{0}=\sum_{i=1}^{k} \lambda_{i} a_{i} \boldsymbol{u}_{i}-\sum_{i=1}^{k} \lambda_{k} a_{i} \boldsymbol{u}_{i}=\sum_{i=1}^{k-1}\left(\lambda_{i}-\lambda_{k}\right) a_{i} \boldsymbol{u}_{i}$.
As $\lambda_{i} \neq \lambda_{k}$ we get $\left(\lambda_{i}-\lambda_{k}\right) a_{i} \neq 0$. Already $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k-1}$ are linearly dependent - a contradiction with the minimality of k.

Properties of eigenvalues and eigenvectors

Theorem: Let $f: V \rightarrow V$ be a linear map and $\lambda_{1}, \ldots, \lambda_{k}$ be distinct eigenvalues of f and $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ the corresponding nontrivial eigenvectors. Then $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ are linearly independent.

Corollary: A matrix of order n may have at most n distinct eigenvalues.

Characteristic polynomial

Definition: The characteristic polynomial of a matrix $\boldsymbol{A} \in \mathbb{K}^{n \times n}$ is $p_{\boldsymbol{A}}(t)=\operatorname{det}\left(\boldsymbol{A}-t \boldsymbol{I}_{n}\right)$

Theorem: A number $\lambda \in \mathbb{K}$ is an eigenvalue of a matrix $\boldsymbol{A} \in \mathbb{K}^{n \times n}$ if and only if λ is a root of its characteristic polynomial $p_{A}(t)$.

Proof: λ is an eigenvalue of $\boldsymbol{A} \Leftrightarrow$
$\Leftrightarrow \exists \boldsymbol{x} \in \mathbb{K}^{n} \backslash \mathbf{0}: \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$
$\Leftrightarrow \exists \boldsymbol{x} \in \mathbb{K}^{n} \backslash \mathbf{0}: \mathbf{0}=\boldsymbol{A} \boldsymbol{x}-\lambda \boldsymbol{x}=\boldsymbol{A} \boldsymbol{x}-\lambda \boldsymbol{I}_{n} \boldsymbol{x}=\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{n}\right) \boldsymbol{x}$
\Leftrightarrow the matrix $\boldsymbol{A}-\lambda \boldsymbol{I}_{n}$ is singular
$\Leftrightarrow 0=\operatorname{det}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{n}\right)=p_{\boldsymbol{A}}(\lambda)$

Eigenvalues - roots of the characteristic polynomial

Zero matrix:
$\mathbf{0}_{n}=\left(\begin{array}{cccc}0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right) \quad p_{0_{n}}(t)=\left|\begin{array}{cccc}-t & 0 & \ldots & 0 \\ 0 & -t & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & -t\end{array}\right|=(-t)^{n}$
The matrix $\mathbf{0}_{n}$ has only single eigenvalue 0 with multiplicity n.
A diagonal or a triangular matrix (also the identity matrix \boldsymbol{I}_{n}):
$\boldsymbol{A}=\left(\begin{array}{cccc}a_{1,1} & * & \ldots & * \\ 0 & a_{2,2} & \ldots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & a_{n, n}\end{array}\right) \quad p_{\boldsymbol{A}}(t)=\left|\begin{array}{cccc}a_{1,1}-t & * & \ldots & * \\ 0 & a_{2,2}-t & \ldots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & a_{n, n}-t\end{array}\right|=$
$=\prod_{i=1}^{n}\left(a_{i, i}-t\right) \quad$ The eigenvalues of \boldsymbol{A} are $a_{1,1}, a_{2,2}, \ldots, a_{n, n}$.

The matrix with ones:
$\mathbf{1}_{n}=\left(\begin{array}{cccc}1 & 1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \ldots & 1\end{array}\right) \quad p_{\mathbf{1}_{n}}(t)=\left|\begin{array}{cccc}1-t & 1 & \ldots & 1 \\ 1 & 1-t & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \ldots & 1 & 1-t\end{array}\right|=$
$=\left|\begin{array}{ccccc}-t & 0 & \ldots & 0 & t \\ 0 & -t & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & -t & t \\ 1 & \cdots & \ldots & 1 & 1-t\end{array}\right|=\left|\begin{array}{ccccc}-t & 0 & \ldots & \ldots & 0 \\ 0 & -t & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & -t & 0 \\ 1 & \ldots & \ldots & 1 & n-t\end{array}\right|=$
$=(-t)^{n-1}(n-t)$
The matrix $\mathbf{1}_{n}$ has the eigenvalue 0 of multiplicity $n-1$ and the eigenvalue n of multiplicity 1 .

Observation: A polynomial
$\left(t^{n}+b_{n-1} t^{n-1}+\cdots+b_{1} t+b_{0}\right)(-1)^{n+1}$
is the characteristic polynomial of the matrix:

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -b_{0} \\
1 & 0 & \ldots & 0 & -b_{1} \\
0 & 1 & \ldots & 0 & -b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -b_{n-1}
\end{array}\right)
$$

Proof: By expansion along the last column of:

$$
\left|\begin{array}{ccccc}
-t & 0 & \ldots & 0 & -b_{0} \\
1 & -t & \ddots & 0 & -b_{1} \\
0 & 1 & \ddots & 0 & -b_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & -b_{n-1}-t
\end{array}\right|
$$

(Also we can expand along the first row and reslove the recurrence.)

Computing eigenvalues and eigenvectors

Determine eigenvalues and eigenvectors of the matrix

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 3 \\
1 & -2 & 2
\end{array}\right)
$$

$\begin{array}{ll}\text { Characteristic } & p_{A}(t)=\left|\begin{array}{ccc}1-t & 2 & 0 \\ 3 & -1-t & 3 \\ 1 & -2 & 2-t\end{array}\right|=,=+\quad=+ \text { polynomial: }\end{array}$
$=(1-t)(-1-t)(2-t)+6+6(1-t)-6(2-t)=-t^{3}+2 t^{2}+t-2$
The eigenvalues of \boldsymbol{A} are the roots of $p_{\boldsymbol{A}}(t)$, i.e. 2,1 and -1 .
The eigenvector \boldsymbol{x}_{1} for $\lambda_{1}=2$ is any solution of $\left(\boldsymbol{A}-\lambda_{1} \boldsymbol{I}_{3}\right) \boldsymbol{x}_{1}=\mathbf{0}$
$\boldsymbol{A}-\lambda_{1} \boldsymbol{I}_{3}=\left(\begin{array}{ccc}1-2 & 2 & 0 \\ 3 & -1-2 & 3 \\ 1 & -2 & 2-2\end{array}\right)=\left(\begin{array}{ccc}-1 & 2 & 0 \\ 3 & -3 & 3 \\ 1 & -2 & 0\end{array}\right) \sim\left(\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 1\end{array}\right)$
The solution \boldsymbol{x}_{1} is any scalar multiple of the vector $(2,1,-1)^{T}$.
The eigenvalue $\lambda_{2}=1$ yields the eigenvector $x_{2}=(-1,0,1)^{T}$, and the eigenvalue $\lambda_{3}=-1$ yields the eigenvector $x_{3}=(-1,1,1)^{T}$.

Coefficients of the characteristic polynomial

Observation: For $p_{\boldsymbol{A}}(t)=\operatorname{det}\left(\boldsymbol{A}-t \boldsymbol{I}_{n}\right)=\sum_{i=0}^{n} b_{i} t^{i}$ it holds:

- $b_{n}=(-1)^{n} \ldots$ only the product along the diagonal in $\boldsymbol{A}-t \boldsymbol{I}_{n}$ may yield t^{n}, each its factor of t has coefficient -1 .
- $b_{0}=\operatorname{det}(\boldsymbol{A}) \ldots$ substitute $t=0$ into $p_{\boldsymbol{A}}(t)$
- $b_{n-1}=(-1)^{n-1} \sum_{i=1}^{n} a_{i, i}$
\ldots the term t^{n-1} could be obtained only from the product of t linear terms $a_{i, i}-t$ that are on the diagonal of $\boldsymbol{A}-t \boldsymbol{I}_{n}$ by choosing $n-1$ times the term $-t$ and once each of $a_{i, i}$.
There are n choices, where summands $a_{i, i}$ in the coefficient $b_{n-1}=(-1)^{n-1} \sum_{i=1}^{n} a_{i, i}$ correspond to distinct choices.

Coefficients of the characteristic polynomial

Observation: For $p_{\boldsymbol{A}}(t)=\operatorname{det}\left(\boldsymbol{A}-t \boldsymbol{I}_{n}\right)=\sum_{i=0}^{n} b_{i} t^{i}$ it holds:

- $b_{n}=(-1)^{n} \ldots$ only the product along the diagonal in $\boldsymbol{A}-t \boldsymbol{I}_{n}$ may yield t^{n}, each its factor of t has coefficient -1 .
- $b_{0}=\operatorname{det}(\boldsymbol{A}) \ldots$ substitute $t=0$ into $p_{\boldsymbol{A}}(t)$
- $b_{n-1}=(-1)^{n-1} \sum_{i=1}^{n} a_{i, i}$

Review: When \mathbb{K} is algebraically closed, one may factorize the characteristic polynomial into linear factors with roots/eigenvalues: $p_{\boldsymbol{A}}(t)=\left(\lambda_{1}-t\right)^{r_{1}}\left(\lambda_{2}-t\right)^{r_{2}} \ldots\left(\lambda_{k}-t\right)^{r_{k}}$ with $r_{1}+\cdots+r_{k}=n$. The exponent r_{i} is the algebraic multiplicity of the eigenvalue λ_{i}.

Coefficients of the characteristic polynomial

Observation: For $p_{\boldsymbol{A}}(t)=\operatorname{det}\left(\boldsymbol{A}-t \boldsymbol{I}_{n}\right)=\sum_{i=0}^{n} b_{i} t^{i}$ it holds:

- $b_{n}=(-1)^{n} \ldots$ only the product along the diagonal in $\boldsymbol{A}-t \boldsymbol{I}_{n}$ may yield t^{n}, each its factor of t has coefficient -1 .
- $b_{0}=\operatorname{det}(\boldsymbol{A}) \ldots$ substitute $t=0$ into $p_{\boldsymbol{A}}(t)$
- $b_{n-1}=(-1)^{n-1} \sum_{i=1}^{n} a_{i, i}$

Moreover, if the characteristic polynomial has a decomposition $p_{\boldsymbol{A}}(t)=\left(\lambda_{1}-t\right)^{r_{1}}\left(\lambda_{2}-t\right)^{r_{2}} \ldots\left(\lambda_{k}-t\right)^{r_{k}}, r_{1}+\cdots+r_{k}=n$ then:

- $b_{0}=\operatorname{det}(\boldsymbol{A})=\prod_{i=1}^{k} \lambda_{i}^{r_{i}} \ldots$ again substitute $t=0$ into $p_{\boldsymbol{A}}(t)$
- $b_{n-1}=(-1)^{n-1} \sum_{i=1}^{n} a_{i, i}=(-1)^{n-1} \sum_{i=1}^{k} \underbrace{\lambda_{i}+\cdots+\lambda_{i}}_{r_{i}}$
\ldots analogously from $\left(\lambda_{1}-t\right)^{r_{1}}\left(\lambda_{2}-t\right)^{r_{2}} \ldots\left(\lambda_{k}-t\right)^{r_{k}}$.

Application - eigenvalues of rabbit populations

Assume that the rabbits' breeding is described by a simple law, e.g. that this year's number of rabbits is the sum of these numbers of the past two years.
Let F_{t} denotes the number of rabbits in year t. We get the recurrent formula for Fibbonacci numbers $F_{t}=F_{t-1}+F_{t-2}$.
We may ask, how the ratio $\frac{F_{t}}{F_{t-1}}$ develops - whether it has a limit, or whether it oscillates, or whether it becomes stable.
The same in the language of matrices and vector spaces:
Consider the space \mathbb{R}^{2}, then the linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
\binom{F_{t}}{F_{t-1}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{F_{t-1}}{F_{t-2}}
$$

describes the same recurrent relation.
E.g., if we start with a single rabbit, we get the sequence

$$
\binom{1}{0} \xrightarrow{f}\binom{1}{1} \xrightarrow{f}\binom{2}{1} \xrightarrow{f}\binom{3}{2} \xrightarrow{f}\binom{5}{3} \xrightarrow{f}\binom{8}{5} \xrightarrow{f}\binom{13}{8} \xrightarrow{f} \ldots
$$

The stable ratio $\frac{F_{t}}{F_{t-1}}$, have vectors $\boldsymbol{x}=\binom{F_{t}}{F_{t-1}}$ satisfying:

$$
f(x)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) x=\lambda x
$$

for some $\lambda \in \mathbb{R}$. (Vectors \boldsymbol{x} and $\lambda \boldsymbol{x}$ have the same ratio.)
The matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ has two eigenvalues, namely:
$\lambda_{1}=\frac{1+\sqrt{5}}{2} \quad x=\binom{\frac{1+\sqrt{5}}{2}}{1}$
... the vector's elements grow with every iteration
$\lambda_{2}=\frac{1-\sqrt{5}}{2} \quad x=\binom{\frac{1-\sqrt{5}}{2}}{1}$
... here the sign changes with every iteration, and the limit is the zero vector

Solving a homogeneous system of first order linear differential equations with constant coefficients

$$
\begin{array}{cccccc}
y_{1}^{\prime} & = & a_{1,1} y_{1} & +\ldots & + & a_{1, n} y_{n} \\
\vdots & \vdots & & \vdots & \vdots \\
y_{n}^{\prime} & = & a_{n, 1} y_{1} & + & \ldots & + \\
a_{n, n} y_{n}
\end{array} \text { yield } \boldsymbol{A}=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right)
$$

For an eigenvalue λ and an eigenvector $\left(k_{1}, \ldots, k_{n}\right)^{T}$ of \boldsymbol{A}, the n-tuple of functions $y_{i}(x):=k_{i} e^{\lambda x}$ solves the original system:

$$
\begin{aligned}
& \left(\begin{array}{c}
y_{1}^{\prime} \\
\vdots \\
y_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\left(k_{1} e^{\lambda x}\right)^{\prime} \\
\vdots \\
\left(k_{n} e^{\lambda x}\right)^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\lambda k_{1} e^{\lambda x} \\
\vdots \\
\lambda k_{n} e^{\lambda x}
\end{array}\right)=e^{\lambda x} \lambda\left(\begin{array}{c}
k_{1} \\
\vdots \\
k_{n}
\end{array}\right)=e^{\lambda x} \boldsymbol{A}\left(\begin{array}{c}
k_{1} \\
\vdots \\
k_{n}
\end{array}\right)= \\
& =\left(\begin{array}{ccc}
a_{1,1} k_{1} e^{\lambda x} & +\ldots+ & a_{1, n} k_{n} e^{\lambda x} \\
\vdots & \vdots \\
a_{n, 1} k_{1} e^{\lambda x} & +\ldots+ & a_{n, n} k_{n} e^{\lambda x}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1,1} y_{1} & +\ldots+ & a_{1, n} y_{n} \\
\vdots & & \vdots \\
a_{n, 1} y_{1} & +\ldots+ & a_{n, n} y_{n}
\end{array}\right)
\end{aligned}
$$

Note that other eigenvalues yield another sets of particular solutions.
The overall solution is any linear combination of particular solutions that satisfies all boundary conditions.

