
Eigenvalues and eigenvectors

Definition: For a vector space V over a field K and a linear map
f : V → V , the eigenvalue of f is any λ ∈ K
for which exists a vector u ∈ V \ 0 such that f (u) = λu.
The eigenvector corresponding to an eigenvalue λ
is any vector u such that f (u) = λu.

If V is of finite dimension n, then f can be represented
by the matrix A = [f ]XX ∈ Kn×n w.r.t. some basis X of V .
This way we get eigenvalues λ ∈ K and eigenvectors x ∈ Kn

of matrices — these shall satisfy Ax = λx.

The collection of all eigenvalues of a matrix is its spectrum.



Examples — a linear map in the plane R2

The axis symmetry by the axis of the 2nd and 4th quadrant

x2x1
[f ]KK =

(
0 −1
−1 0

)

λ1 = 1 x1 = c · (−1, 1)T

λ2 = −1 x2 = c · (1, 1)T



The rotation by the right angle

[f ]KK =

(
0 1
−1 0

)

No real eigenvalues nor eigenvectors exist.
The projection onto the first coordinate

x2

x1
[f ]KK =

(
1 0
0 0

)

λ1 = 0 x1 = c · (0, 1)T

λ2 = 1 x2 = c · (1, 0)T



Scaling by the factor 2

f (u)

u [f ]KK =

(
2 0
0 2

)

λ1 = 2 Every vector is an eigenvector.

A linear map given by a matrix

x1

u

f (u)

[f ]KK =

(
1 0
1 1

)

λ1 = 1 x1 = c · (0, 1)T



Eigenvectors and eigenvalues of a diagonal matrix D

The equation

Dx =


d1,1 0 . . . 0
0 d2,2

. . . ...
... . . . . . . 0
0 . . . 0 dn,n




x1
x2
...

xn

 =


d1,1x1
d2,2x2

...
dn,nxn

 = λx

is solved by the following eigenvalues and eigenvectors:

λ = d1,1 and x = e1 = (1, 0, 0, . . . , 0)T ,
λ = d2,2 and x = e2 = (0, 1, 0, . . . , 0)T ,

...
λ = dn,n and x = en = (0, 0, . . . , 0, 1)T .

Hence the eigenvalues of D are the elements on the diagonal,
and the eigenvectors form the standard basis of the space Kn.



Properties of eigenvalues and eigenvectors

Observation: Eigenvectors corresponding to the same eigenvalue
form a subspace.

Proof: Consider an eigenvalue λ of a linear map f and the set
U = {u ∈ V : f (u) = λu}

For any u, v ∈ U we get:
I f (au) = af (u) = aλu = λ(au),
I f (u + v) = f (u) + f (v) = λu + λv = λ(u + v).

Hence U is closed under addition and scalar multiples,
i.e. a subspace of V .

Definition: The geometric multiplicity of an eigenvalue
is the dimension of the space of its eigenvectors.



Properties of eigenvalues and eigenvectors
Theorem: Let f : V → V be a linear map and λ1, . . . , λk be
distinct eigenvalues of f and u1, . . . ,uk the corresponding
nontrivial eigenvectors. Then u1, . . . ,uk are linearly independent.
Proof: Assume for a contradiction, that k is the smallest number
for which exist λ1, . . . , λk and u1, . . . ,uk contradicting the claim,

i.e. there are a1, . . . , ak ∈ K \ 0 such that
k∑

i=1
aiui = 0.

We express 0 in two ways: 0 = λk0 = λk
k∑

i=1
aiui =

k∑
i=1

λkaiui ,

and also: 0 = f (0) = f
(

k∑
i=1

aiui

)
=

k∑
i=1

ai f (ui) =
k∑

i=1
λiaiui ,

hence: 0 = 0− 0 =
k∑

i=1
λiaiui −

k∑
i=1

λkaiui =
k−1∑
i=1

(λi − λk)aiui .

As λi 6= λk we get (λi − λk)ai 6= 0. Already u1, . . . ,uk−1 are
linearly dependent — a contradiction with the minimality of k.



Properties of eigenvalues and eigenvectors

Theorem: Let f : V → V be a linear map and λ1, . . . , λk be
distinct eigenvalues of f and u1, . . . ,uk the corresponding
nontrivial eigenvectors. Then u1, . . . ,uk are linearly independent.

Corollary: A matrix of order n may have at most n distinct
eigenvalues.



Characteristic polynomial

Definition: The characteristic polynomial of a matrix A ∈ Kn×n

is pA(t) = det(A− tIn)

Theorem: A number λ ∈ K is an eigenvalue of a matrix A ∈ Kn×n

if and only if λ is a root of its characteristic polynomial pA(t).

Proof: λ is an eigenvalue of A ⇔
⇔ ∃x ∈ Kn \ 0 : Ax = λx
⇔ ∃x ∈ Kn \ 0 : 0 = Ax − λx = Ax − λInx = (A− λIn)x
⇔ the matrix A− λIn is singular
⇔ 0 = det(A− λIn) = pA(λ)



Eigenvalues — roots of the characteristic polynomial

Zero matrix:

0n =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 p0n (t) =

∣∣∣∣∣∣∣∣∣
−t 0 . . . 0
0 −t . . . 0
...

...
. . .

...
0 0 . . . −t

∣∣∣∣∣∣∣∣∣ = (−t)n

The matrix 0n has only single eigenvalue 0 with multiplicity n.

A diagonal or a triangular matrix (also the identity matrix In):

A =


a1,1 ∗ . . . ∗
0 a2,2 . . . ∗
...

...
. . .

...
0 0 . . . an,n

 pA(t) =

∣∣∣∣∣∣∣∣∣
a1,1 − t ∗ . . . ∗

0 a2,2 − t . . . ∗
...

...
. . .

...
0 0 . . . an,n − t

∣∣∣∣∣∣∣∣∣ =

=
n∏

i=1
(ai,i − t) The eigenvalues of A are a1,1, a2,2, . . . , an,n.



The matrix with ones:

1n =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 p1n (t) =

∣∣∣∣∣∣∣∣∣∣
1− t 1 . . . 1

1 1− t
. . .

...
...

. . . . . . 1
1 . . . 1 1− t

∣∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣∣∣∣

−t 0 . . . 0 t

0 −t
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 −t t
1 . . . . . . 1 1− t

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

−t 0 . . . . . . 0

0 −t
. . .

...
...

. . . . . . . . .
...

0 . . . 0 −t 0
1 . . . . . . 1 n − t

∣∣∣∣∣∣∣∣∣∣∣∣
=

= (−t)n−1(n − t)

The matrix 1n has the eigenvalue 0 of multiplicity n − 1
and the eigenvalue n of multiplicity 1.



Observation: A polynomial
(tn + bn−1tn−1 + · · ·+ b1t + b0)(−1)n+1

is the characteristic polynomial of the matrix:
0 0 . . . 0 −b0
1 0 . . . 0 −b1
0 1 . . . 0 −b2
...

... . . . ...
...

0 0 . . . 1 −bn−1


Proof: By expansion along the last column of:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−t 0 . . . 0 −b0

1 −t . . . 0 −b1

0 1 . . . 0 −b2
... . . . . . . . . . ...
0 . . . 0 1 −bn−1 − t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(Also we can expand along the first row and reslove the
recurrence.)



Computing eigenvalues and eigenvectors

Determine eigenvalues and
eigenvectors of the matrix A =

1 2 0
3 −1 3
1 −2 2


Characteristic
polynomial: pA(t) =

∣∣∣∣∣∣∣
1− t 2 0
3 −1− t 3
1 −2 2− t

∣∣∣∣∣∣∣ =

= (1−t)(−1−t)(2−t)+6+6(1−t)−6(2−t) = −t3 +2t2 +t−2
The eigenvalues of A are the roots of pA(t), i.e. 2, 1 and −1.

The eigenvector x1 for λ1 = 2 is any solution of (A− λ1I3)x1 = 0

A−λ1I3 =

1− 2 2 0
3 −1− 2 3
1 −2 2− 2

 =

−1 2 0
3 −3 3
1 −2 0

 ∼ (1 −2 0
0 1 1

)
The solution x1 is any scalar multiple of the vector (2, 1,−1)T .
The eigenvalue λ2 = 1 yields the eigenvector x2 = (−1, 0, 1)T , and
the eigenvalue λ3 = −1 yields the eigenvector x3 = (−1, 1, 1)T .



Coefficients of the characteristic polynomial
Observation: For pA(t) = det(A− tIn) =

n∑
i=0

bi t i it holds:

I bn = (−1)n . . . only the product along the diagonal in
A− tIn may yield tn, each its factor of t has coefficient −1.

I b0 = det(A) . . . substitute t = 0 into pA(t)

I bn−1 = (−1)n−1
n∑

i=1
ai ,i

. . . the term tn−1 could be obtained only from the product of t
linear terms ai ,i − t that are on the diagonal of A− tIn by
choosing n − 1 times the term −t and once each of ai ,i .
There are n choices, where summands ai ,i in the coefficient
bn−1 = (−1)n−1

n∑
i=1

ai ,i correspond to distinct choices.

Moreover, if the characteristic polynomial has a decomposition
pA(t) = (λ1 − t)r1(λ2 − t)r2 . . . (λk − t)rk , r1 + · · ·+ rk = n then:

I b0 = det(A) =
k∏

i=1
λri

i . . . again substitute t = 0 into pA(t)

I bn−1 = (−1)n−1
n∑

i=1
ai ,i = (−1)n−1

k∑
i=1

λi + · · ·+ λi︸ ︷︷ ︸
ri

. . . analogously from (λ1 − t)r1(λ2 − t)r2 . . . (λk − t)rk .
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Application — eigenvalues of rabbit populations
Assume that the rabbits’ breeding is described by a simple law, e.g.
that this year’s number of rabbits is the sum of these numbers of
the past two years.
Let Ft denotes the number of rabbits in year t. We get the
recurrent formula for Fibbonacci numbers Ft = Ft−1 + Ft−2.
We may ask, how the ratio Ft

Ft−1
develops — whether it has a limit,

or whether it oscillates, or whether it becomes stable.
The same in the language of matrices and vector spaces:
Consider the space R2, then the linear map f : R2 → R2 given by(

Ft
Ft−1

)
=
(
1 1
1 0

)(
Ft−1
Ft−2

)
describes the same recurrent relation.
E.g., if we start with a single rabbit, we get the sequence(

1
0

)
f−→
(
1
1

)
f−→
(
2
1

)
f−→
(
3
2

)
f−→
(
5
3

)
f−→
(
8
5

)
f−→
(
13
8

)
f−→ . . .



The stable ratio Ft
Ft−1

, have vectors x =
(

Ft
Ft−1

)
satisfying:

f (x) =
(
1 1
1 0

)
x = λx

for some λ ∈ R. (Vectors x and λx have the same ratio.)

The matrix
(
1 1
1 0

)
has two eigenvalues, namely:

λ1 = 1+
√

5
2 x =

(
1+
√

5
2
1

)
. . . the vector’s elements grow
with every iteration

λ2 = 1−
√

5
2 x =

(
1−
√

5
2
1

) . . . here the sign changes with
every iteration, and the limit is
the zero vector



Solving a homogeneous system of first order linear
differential equations with constant coefficients

y ′1 = a1,1y1 + . . . + a1,nyn
...

...
...

y ′n = an,1y1 + . . . + an,nyn

yield A =

a1,1 . . . a1,n
...

...
an,1 . . . an,n


For an eigenvalue λ and an eigenvector (k1, . . . , kn)T of A, the n-tuple of
functions yi(x) := kieλx solves the original system:y ′1

...
y ′n

 =

(k1eλx )′
...

(kneλx )′

 =

λk1eλx

...
λkneλx

 = eλxλ

k1
...

kn

 = eλx A

k1
...

kn

 =

=

a1,1k1eλx + . . .+ a1,nkneλx

...
...

an,1k1eλx + . . .+ an,nkneλx

 =

a1,1y1 + . . .+ a1,nyn
...

...
an,1y1 + . . .+ an,nyn


Note that other eigenvalues yield another sets of particular solutions.
The overall solution is any linear combination of particular solutions that
satisfies all boundary conditions.


