Polynomials

Definition: A polynomial of degree n in variable x over a field \mathbb{K} is an expression $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$, where $a_{n} \neq 0$ and $a_{n}, \ldots, a_{0} \in \mathbb{K}$. We write $p \in \mathbb{K}(x)$.
Operations on polynomials $p(x)=\sum_{i=0}^{n} a_{i} x^{i}, q(x)=\sum_{i=0}^{m} b_{i} x^{i}$:

- addition, subtraction: $(p \pm q)(x)=\sum_{i=0}^{\max n, m}\left(a_{i} \pm b_{i}\right) x^{i}$
- scalar multiple: $(\alpha p)(x)=\sum_{i=0}^{n}\left(\alpha a_{i}\right) x^{i}$
- product $(p q)(x)=\sum_{i=0}^{n+m} c_{i} x^{i}$, where $c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j}$
- division with a remainder - there are unique polynomials $r, t \in \mathbb{K}(x)$ such that $p=q t+r$, where the degree of r is less than m, the degree of q.

Example - operations on polynomials over \mathbb{Z}_{5}

Addition:

$$
\left(3 x^{3}+2 x+1\right)+\left(2 x^{2}+3 x+1\right)=3 x^{3}+2 x^{2}+2
$$

the degree may decrease:

$$
\left(3 x^{3}+2 x+1\right)+\left(2 x^{3}+3 x+1\right)=2
$$

Multiple:

$$
2 \cdot\left(3 x^{3}+2 x+1\right)=x^{3}+4 x+2
$$

Product:

$$
\left(3 x^{3}+2 x+1\right)\left(2 x^{2}+3 x+1\right)=x^{5}+4 x^{4}+2 x^{3}+3 x^{2}+1
$$

Example - operations on polynomials over \mathbb{Z}_{5}

Division with the remainder:

$$
\begin{gathered}
\begin{array}{r}
4 x^{5}+2 x^{4}+3 x^{2}+3: 3 x^{2}+4 x+2=3 x^{3}+3 x+2 \\
-4 x^{5}-2 x^{4}-x^{3} \\
\hline 4 x^{3}+3 x^{2} \\
-4 x^{3}-2 x^{2}-x \\
x^{2}+4 x+3 \\
-\frac{x^{2}-3 x-4}{x+4}
\end{array}
\end{gathered}
$$

Correctness check $p=q t+r$:

$$
4 x^{5}+2 x^{4}+3 x^{2}+3=\left(3 x^{2}+4 x+2\right)\left(3 x^{3}+3 x+2\right)+(x+4)
$$

Fermat's little theorem

Theorem: For any $x \in \mathbb{Z}_{p} \backslash\{0\}: x^{p-1}=1$.
Proof: The map $i \rightarrow x i$ is a bijection on $\{1, \ldots, p-1\}$ in \mathbb{Z}_{p}.
$\ln \prod_{i=1}^{p-1} i=\prod_{i=1}^{p-1} x i=x^{p-1} \prod_{i=1}^{p-1} i$ cancel the nonzero term $\prod_{i=1}^{p-1} i$.
Corollary: For any $x \in \mathbb{Z}_{p}: x^{p}-x=0$.
Corollary: For any $q \in \mathbb{Z}_{p}(x)$ there is $r \in \mathbb{Z}_{p}(x)$ of degree at most $p-1$, such that $\forall x \in \mathbb{Z}_{p}: q(x)=r(x)$.
Example:

$$
4 x^{5}+2 x^{4}+3 x^{2}+3=4\left(x^{5}-x\right)+2 x^{4}+3 x^{2}+4 x+3
$$

i.e. the polynomial $q(x)=4 x^{5}+2 x^{4}+3 x^{2}+3$ yields on \mathbb{Z}_{5} the same values as $r(x)=2 x^{4}+3 x^{2}+4 x+3$.

Roots

Definition: The root of a polynomial $p \in \mathbb{K}(x)$
is $r \in \mathbb{K}$ such that $p(r)=0$.
Observation: The element $r \in \mathbb{K}$ is a root of a polynomial p if and only if the linear polynomial $x-r$ divides p without a remainder.

Definition: The multiplicity of the root r of $p \in \mathbb{K}(x)$ is the maximum positive integer k such that $(x-r)^{k}$ divides p.
Theorem: (The fundamental theorem of algebra) Every polynomial $p \in \mathbb{C}(x)$ has at least one root.
Corollary: Every polynomial $p \in \mathbb{C}(x)$ can be factorized into linear factors, i.e polynomials of degree one.
Definition: If every $p \in \mathbb{K}(x)$ of degree at least 1 has a root, then the field \mathbb{K} is algebraically closed.

Representations of polynomials of degree n

- by the coefficients a_{0}, \ldots, a_{n}
- in algebraically closed fields by a_{n} and the n roots r_{1}, \ldots, r_{n}
- by the values of the polynomial in $n+1$ distinct points

Problem: Given $n+1$ pairs $\left(x_{i}, y_{i}\right)$ for $i=0, \ldots, n$, determine $p \in \mathbb{K}(x)$ of degree at most n such that $p\left(x_{i}\right)=y_{i}$ for all i.

Observation: Coefficients a_{0}, \ldots, a_{n} of p are solution of the system:

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad \begin{aligned}
& \text { Definition: The matrix } \\
& \text { of this system is the } \\
& \text { Vandermonde matrix } \\
& \boldsymbol{V}_{n+1}\left(x_{0}, \ldots, x_{n}\right)
\end{aligned}
$$

Theorem: The Vandermonde matrix $\boldsymbol{V}_{n+1}\left(x_{0}, \ldots, x_{n}\right)$ is regular if an only if x_{0}, \ldots, x_{n} are distinct.

Proof of the regularity of the Vandermonde matrix

$$
\begin{aligned}
& \boldsymbol{V}_{n+1}\left(x_{0}, \ldots, x_{n}\right)=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right) \quad \begin{array}{l}
\text { Deduct the first row from others. } \\
\text { Then factor out } x_{i}-x_{0} \text { from the } \\
i \text {-th row for each } i=1, \ldots, n . \\
\text { In the first column are } n \text { zeros so } \\
\text { we can expand: } \operatorname{det}\left(\boldsymbol{V}_{n+1}\right)=
\end{array} \\
& =\prod_{i=1}^{n}\left(x_{i}-x_{0}\right) \cdot\left|\begin{array}{ccccc}
1 & x_{1}+x_{0} & x_{1}^{2}+x_{1} x_{0}+x_{0}^{2} & \ldots & x_{1}^{n-1}+x_{1}^{n-2} x_{0}+\cdots+x_{0}^{n-1} \\
1 & x_{2}+x_{0} & x_{2}^{2}+x_{2} x_{0}+x_{0}^{2} & \ldots & x_{2}^{n-1}+x_{2}^{n-2} x_{0}+\cdots+x_{0}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n}+x_{0} & x_{n}^{2}+x_{n} x_{0}+x_{0}^{2} & \ldots & x_{n}^{n-1}+x_{n}^{n-2} x_{0}+\cdots+x_{0}^{n-1}
\end{array}\right|
\end{aligned}
$$

Now backward subtract from every column the x_{0}-multiple of the previous one. By this we eliminate all terms containing x_{0}.
Consequently, we get a recurrence that could be expanded as follows:

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{V}_{n+1}\left(x_{0}, \ldots, x_{n}\right)\right) & =\left(\prod_{i=1}^{n}\left(x_{i}-x_{0}\right)\right) \operatorname{det}\left(\boldsymbol{V}_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& =\prod_{i<j}\left(x_{j}-x_{i}\right)
\end{aligned}
$$

Example for $n=3$

$$
\operatorname{det}\left(\boldsymbol{V}_{4}\left(x_{0}, \ldots, x_{3}\right)\right)=
$$

$$
=\left|\begin{array}{cccc}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3}
\end{array}\right| \begin{aligned}
& \text { II } \\
& \text { II }
\end{aligned}=\left\lvert\, \begin{array}{cccc|c}
1 & x_{0} & x_{0}^{2} & x_{0}^{3} & \mathrm{I} \\
0 & x_{1}-x_{0} & x_{1}^{2}-x_{0}^{2} & x_{1}^{3}-x_{0}^{3} & \text { II }-\mathrm{I} \\
0 & x_{2}-x_{0} & x_{2}^{2}-x_{0}^{2} & x_{2}^{3}-x_{0}^{3} & \text { III I } \\
0 & x_{3}-x_{0} & x_{3}^{2}-x_{0}^{2} & x_{3}^{3}-x_{0}^{3} & \text { II }-\mathrm{I}
\end{array}\right.
$$

$$
=\left|\begin{array}{ccc}
x_{1}-x_{0} & x_{1}^{2}-x_{0}^{2} & x_{1}^{3}-x_{0}^{3} \\
x_{2}-x_{0} & x_{2}^{2}-x_{0}^{2} & x_{2}^{3}-x_{0}^{3} \\
x_{3}-x_{0} & x_{3}^{2}-x_{0}^{2} & x_{3}^{3}-x_{0}^{3}
\end{array}\right|:\left(x_{1}-x_{0}\right)
$$

$$
=\left(x_{1}-x_{0}\right)\left(x_{2}-x_{0}\right)\left(x_{3}-x_{0}\right)\left|\begin{array}{ccc}
1 & x_{1}+x_{0} & x_{1}^{2}+x_{1} x_{0}+x_{0}^{2} \\
1 & x_{2}+x_{0} & x_{2}^{2}+x_{2} x_{0}+x_{0}^{2} \\
1 & x_{3}+x_{0} & x_{3}^{2}+x_{3} x_{0}+x_{0}^{2} \\
\text { I } & \text { II } & \text { III }
\end{array}\right|
$$

$$
=\prod_{i=1}^{3}\left(x_{i}-x_{0}\right)\left|\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2} \\
\text { I } & \text { II }-x_{0} \mathrm{I} & \text { III- }- \text { III }
\end{array}\right|=\left(\prod_{i=1}^{3}\left(x_{i}-x_{0}\right)\right) \operatorname{det}\left(\boldsymbol{V}_{3}\left(x_{1}, x_{2}, x_{3}\right)\right)
$$

Lagrange interpolation

\ldots an alternative way to interpolate a polynomial $p \in \mathbb{K}(x)$ of degree n through $n+1$ points $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n+1$.

1. determine $n+1$ auxiliary polynomials of degree n

$$
\begin{aligned}
p_{i}(x)= & \frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}= \\
& \quad=\frac{\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n+1}\right)}{\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n+1}\right)}
\end{aligned}
$$

Observe that $p_{i}\left(x_{i}\right)=1$ and $p_{i}\left(x_{j}\right)=0$ for $i \neq j$.
2. compose $p(x)$ as the linear combination $p(x)=\sum_{i=1}^{n+1} y_{i} p_{i}(x)$.

Then $p\left(x_{i}\right)=y_{i} p_{i}\left(x_{i}\right)=y_{i}$ as in all the other terms $p_{j}\left(x_{i}\right)=0$.

Example of Lagrange interpolation

Goal: interpolate a polynomial $p(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ over \mathbb{Z}_{11} through points $(1,5),(2,1),(3,3),(4,4),(5,3),(6,5)$ and $(7,10)$.

We seek $a_{4}, a_{3}, a_{2}, a_{1}$ and a_{0}, that satisfy (over $\left.\mathbb{Z}_{11}!!\right)$
$a_{4}+a_{3}+a_{2}+a_{1}+a_{0}=5$
$5 a_{4}+8 a_{3}+4 a_{2}+2 a_{1}+a_{0}=1$
$4 a_{4}+5 a_{3}+9 a_{2}+3 a_{1}+a_{0}=3$
$3 a_{4}+9 a_{3}+5 a_{2}+4 a_{1}+a_{0}=4$
$9 a_{4}+4 a_{3}+3 a_{2}+5 a_{1}+a_{0}=3$
$9 a_{4}+7 a_{3}+3 a_{2}+6 a_{1}+a_{0}=5$
$3 a_{4}+2 a_{3}+5 a_{2}+7 a_{1}+a_{0}=10$

In fact, 5 points suffices. We may restrict ourselves to the first 5 equations (and the first 5 points).

We first calculate partial polynomials p_{1}, \ldots, p_{5}.
These polynomials satisfy: $p_{i}\left(x_{i}\right)=1$ and also $j \neq i: p_{i}\left(x_{j}\right)=0$.
$p_{1}(x)=\frac{(x-2)(x-3)(x-4)(x-5)}{(1-2)(1-3)(1-4)(1-5)}=\frac{x^{4}+8 x^{3}+5 x^{2}+10}{2}=6 x^{4}+4 x^{3}+8 x^{2}+5$
$p_{2}(x)=\frac{(x-1)(x-3)(x-4)(x-5)}{(2-1)(2-3)(2-4)(2-5)}=\frac{x^{4}+9 x^{3}+4 x^{2}+3 x+5}{5}=9 x^{4}+4 x^{3}+3 x^{2}+5 x+1$
$p_{3}(x)=\frac{(x-1)(x-2)(x-4)(x-5)}{(3-1)(3-2)(3-4)(3-5)}=\frac{x^{4}+10 x^{3}+5 x^{2}+10 x+7}{4}=3 x^{4}+8 x^{3}+4 x^{2}+8 x+10$
$p_{4}(x)=\frac{(x-1)(x-2)(x-3)(x-5)}{(4-1)(4-2)(4-3)(4-5)}=\frac{x^{4}+8 x^{2}+5 x+8}{5}=9 x^{4}+6 x^{2}+x+6$
$p_{5}(x)=\frac{(x-1)(x-2)(x-3)(x-4)}{(5-1)(5-2)(5-3)(5-4)}=\frac{x^{4}+x^{3}+2 x^{2}+5 x+2}{2}=6 x^{4}+6 x^{3}+x^{2}+8 x+1$
The desired polynomial is combined from the partial polynomials and from the values in the given points $(i, p(i))$ as:

$$
\begin{aligned}
p(x) & =\sum_{i=1}^{5} y_{i} p_{i}(x)=5 p_{1}(x)+p_{2}(x)+3 p_{3}(x)+4 p_{4}(x)+3 p_{5}(x) \\
& =3 x^{4}+5 x^{2}+2 x+6
\end{aligned}
$$

We may check, whether the other points $(6,5),(7,10)$ lie on $p(x)$ $p(6)=3 \cdot 6^{4}+5 \cdot 6^{2}+2 \cdot 6+6=3 \cdot 9+5 \cdot 3+2 \cdot 6+6=5$
$p(7)=3 \cdot 7^{4}+5 \cdot 7^{2}+2 \cdot 7+6=3 \cdot 3+5 \cdot 5+2 \cdot 7+6=10$

Applications

Problem: Given numbers m and n, design m keys so that:

- It is possible to reconstruct a given secret from any combination of n keys, but
- it is impossible to reconstruct a given secret from any combination of less than n keys.
Assume that the way the keys are constructed is publicly known.
Solution: Construct a polynomial of degree $n-1$ and distribute m distinct pairs $\left(x_{i}, p\left(x_{i}\right)\right)$ as keys. The secret is the polynomial.
The field could be e.g. \mathbb{R} or \mathbb{Z}_{p} with $p>m$.
Problem: Can two integers of n digits be multiplied in $o\left(n^{2}\right)$ time? Solution:
- Interpret these integers as polynomials p, q of degree $n-1$,
- choose $2 n$ pairs $(i, p(i)),(i, q(i))$ and compute (i,p(i)q(i)),
- then find the coefficients of the product $p q$ in time $O(n \log n)$.

The choice of a suitable field and the recurrence behind is the principle of the so called fast Fourier transform.

