Polynomials

Definition: A *polynomial* of degree *n* in variable *x* over a field \mathbb{K} is an expression $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$, where $a_n \neq 0$ and $a_n, \ldots, a_0 \in \mathbb{K}$. We write $p \in \mathbb{K}(x)$.

Operations on polynomials $p(x) = \sum_{i=0}^{n} a_i x^i, q(x) = \sum_{i=0}^{m} b_i x^i$:

• addition, subtraction:
$$(p \pm q)(x) = \sum_{i=0}^{\max n, m} (a_i \pm b_i) x^i$$

• scalar multiple:
$$(\alpha p)(x) = \sum_{i=0}^{n} (\alpha a_i) x^i$$

• product
$$(pq)(x) = \sum_{i=0}^{n+m} c_i x^i$$
, where $c_i = \sum_{j=0}^i a_j b_{i-j}$

Idivision with a remainder — there are unique polynomials r, t ∈ K(x) such that p = qt + r, where the degree of r is less than m, the degree of q. Example — operations on polynomials over \mathbb{Z}_5

Addition:

$$(3x^3 + 2x + 1) + (2x^2 + 3x + 1) = 3x^3 + 2x^2 + 2$$

the degree may decrease:

$$(3x^3 + 2x + 1) + (2x^3 + 3x + 1) = 2$$

Multiple:

$$2 \cdot (3x^3 + 2x + 1) = x^3 + 4x + 2$$

Product:

 $(3x^3 + 2x + 1)(2x^2 + 3x + 1) = x^5 + 4x^4 + 2x^3 + 3x^2 + 1$

Example — operations on polynomials over \mathbb{Z}_5

Division with the remainder:

$$\frac{4x^{5}+2x^{4} + 3x^{2} + 3 : 3x^{2} + 4x + 2 = 3x^{3} + 3x + 2}{-4x^{5}-2x^{4}-x^{3}} + 3x^{2} + \frac{4x^{3}+3x^{2}}{-4x^{3}-2x^{2}-x} + \frac{-4x^{3}-2x^{2}-x}{x^{2}+4x+3} + \frac{-x^{2}-3x-4}{x+4}}{-x^{2}-3x-4}$$

Correctness check p = qt + r:

 $4x^{5} + 2x^{4} + 3x^{2} + 3 = (3x^{2} + 4x + 2)(3x^{3} + 3x + 2) + (x + 4)$

Fermat's little theorem

Theorem: For any $x \in \mathbb{Z}_p \setminus \{0\} : x^{p-1} = 1$.

Proof: The map $i \to xi$ is a bijection on $\{1, \dots, p-1\}$ in \mathbb{Z}_p . In $\prod_{i=1}^{p-1} i = \prod_{i=1}^{p-1} xi = x^{p-1} \prod_{i=1}^{p-1} i$ cancel the nonzero term $\prod_{i=1}^{p-1} i$.

Corollary: For any $x \in \mathbb{Z}_p : x^p - x = 0$.

Corollary: For any $q \in \mathbb{Z}_p(x)$ there is $r \in \mathbb{Z}_p(x)$ of degree at most p-1, such that $\forall x \in \mathbb{Z}_p : q(x) = r(x)$.

Example:

 $4x^{5} + 2x^{4} + 3x^{2} + 3 = 4(x^{5} - x) + 2x^{4} + 3x^{2} + 4x + 3$

i.e. the polynomial $q(x) = 4x^5 + 2x^4 + 3x^2 + 3$ yields on \mathbb{Z}_5 the same values as $r(x) = 2x^4 + 3x^2 + 4x + 3$.

Roots

Definition: The root of a polynomial $p \in \mathbb{K}(x)$ is $r \in \mathbb{K}$ such that p(r) = 0.

Observation: The element $r \in \mathbb{K}$ is a root of a polynomial p if and only if the linear polynomial x - r divides p without a remainder.

Definition: The multiplicity of the root r of $p \in \mathbb{K}(x)$ is the maximum positive integer k such that $(x - r)^k$ divides p.

Theorem: (The fundamental theorem of algebra) Every polynomial $p \in \mathbb{C}(x)$ has at least one root.

Corollary: Every polynomial $p \in \mathbb{C}(x)$ can be factorized into linear factors, i.e polynomials of degree one.

Definition: If every $p \in \mathbb{K}(x)$ of degree at least 1 has a root, then the field \mathbb{K} is *algebraically closed*.

Representations of polynomials of degree n

 \triangleright by the coefficients a_0, \ldots, a_n

 \triangleright in algebraically closed fields by a_n and the *n* roots r_1, \ldots, r_n

by the values of the polynomial in n+1 distinct points Problem: Given n + 1 pairs (x_i, y_i) for $i = 0, \ldots, n$, determine $p \in \mathbb{K}(x)$ of degree at most *n* such that $p(x_i) = y_i$ for all *i*.

Observation: Coefficients a_0, \ldots, a_n of p are solution of the system:

 $\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \begin{array}{c} \text{Definition: The matrix} \\ \text{of this system is the} \\ \text{Vandermonde matrix} \\ \textbf{V}_{n+1}(x_0, \dots, x_n) \end{pmatrix}$

Definition: The matrix

Theorem: The Vandermonde matrix $V_{n+1}(x_0, \ldots, x_n)$ is regular if an only if x_0, \ldots, x_n are distinct.

Proof of the regularity of the Vandermonde matrix

$$\boldsymbol{V}_{n+1}(x_0,\ldots,x_n) = \begin{pmatrix} 1 & x_0 & x_0^2 & \ldots & x_0^n \\ 1 & x_1 & x_1^2 & \ldots & x_1^n \\ 1 & x_2 & x_2^2 & \ldots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \ldots & x_n^n \end{pmatrix}$$

Deduct the first row from others. Then factor out $x_i - x_0$ from the *i*-th row for each i = 1, ..., n. In the first column are *n* zeros so we can expand: det(V_{n+1}) =

$$=\prod_{i=1}^{n}(x_{i}-x_{0})\cdot\begin{vmatrix}1 & x_{1}+x_{0} & x_{1}^{2}+x_{1}x_{0}+x_{0}^{2} & \dots & x_{1}^{n-1}+x_{1}^{n-2}x_{0}+\dots+x_{0}^{n-1}\\1 & x_{2}+x_{0} & x_{2}^{2}+x_{2}x_{0}+x_{0}^{2} & \dots & x_{2}^{n-1}+x_{2}^{n-2}x_{0}+\dots+x_{0}^{n-1}\\\vdots & \vdots & \vdots & \ddots & \vdots\\1 & x_{n}+x_{0} & x_{n}^{2}+x_{n}x_{0}+x_{0}^{2} & \dots & x_{n}^{n-1}+x_{n}^{n-2}x_{0}+\dots+x_{0}^{n-1}\end{vmatrix}$$

Now *backward* subtract from every column the x_0 -multiple of the previous one. By this we eliminate all terms containing x_0 .

Consequently, we get a recurrence that could be expanded as follows:

$$det(\mathbf{V}_{n+1}(x_0,\ldots,x_n)) = \left(\prod_{i=1}^n (x_i - x_0)\right) det(\mathbf{V}_n(x_1,\ldots,x_n))$$
$$= \prod_{i < j} (x_j - x_i)$$

Example for n = 3

$$\begin{aligned} \det(\mathbf{V}_{4}(x_{0},\ldots,x_{3})) &= \\ &= \begin{vmatrix} 1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\ 1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\ 1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\ 1 & x_{3} & x_{3}^{2} & x_{3}^{3} \end{vmatrix} \stackrel{\mathbf{I}}{\mathbf{II}} = \begin{vmatrix} 1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\ 0 & x_{1} - x_{0} & x_{1}^{2} - x_{0}^{2} & x_{1}^{3} - x_{0}^{3} \\ 0 & x_{2} - x_{0} & x_{2}^{2} - x_{0}^{2} & x_{1}^{3} - x_{0}^{3} \\ 0 & x_{3} - x_{0} & x_{3}^{2} - x_{0}^{2} & x_{3}^{3} - x_{0}^{3} \\ x_{2} - x_{0} & x_{2}^{2} - x_{0}^{2} & x_{1}^{3} - x_{0}^{3} \\ x_{3} - x_{0} & x_{3}^{2} - x_{0}^{2} & x_{3}^{3} - x_{0}^{3} \\ x_{3} - x_{0} & x_{3}^{2} - x_{0}^{2} & x_{3}^{3} - x_{0}^{3} \\ &= \left(x_{1} - x_{0}\right)(x_{2} - x_{0})(x_{3} - x_{0}) \begin{vmatrix} 1 & x_{1} + x_{0} & x_{1}^{2} + x_{1}x_{0} + x_{0}^{2} \\ 1 & x_{2} + x_{0} & x_{2}^{2} + x_{2}x_{0} + x_{0}^{2} \\ 1 & x_{3} + x_{0} & x_{3}^{2} + x_{3}x_{0} + x_{0}^{2} \\ &1 & x_{3} + x_{0} & x_{3}^{2} + x_{3}x_{0} + x_{0}^{2} \\ &1 & x_{3} + x_{0} & x_{3}^{2} + x_{3}x_{0} + x_{0}^{2} \\ &1 & x_{3} + x_{0} & x_{3}^{2} + x_{3}x_{0} + x_{0}^{2} \\ &1 & x_{1} & x_{1}^{2} \\ &1 & x_{1} & x_{1}^{2} \\ &1 & x_{2} & x_{2}^{2} \\ &1 & x_{3} & x_{3}^{2} \\ &1 & x_{1} & x_{1}^{2} \\ &1 & x_{1} &$$

Lagrange interpolation

... an alternative way to interpolate a polynomial $p \in \mathbb{K}(x)$ of degree *n* through n + 1 points (x_i, y_i) for i = 1, ..., n + 1.

1. determine
$$n + 1$$
 auxiliary polynomials of degree n

$$p_i(\mathbf{x}) = \prod_{\substack{j \neq i \\ j \neq i}}^{\prod (x-x_j)} = \frac{(x-x_1)...(x-x_{i-1})(x-x_{i+1})...(x-x_{n+1})}{(x_i-x_1)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_{n+1})}$$

Observe that $p_i(x_i) = 1$ and $p_i(x_j) = 0$ for $i \neq j$.

2. compose p(x) as the linear combination $p(x) = \sum_{i=1}^{n+1} y_i p_i(x)$. Then $p(x_i) = y_i p_i(x_i) = y_i$ as in all the other terms $p_i(x_i) = 0$.

Example of Lagrange interpolation

Goal: interpolate a polynomial $p(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ over \mathbb{Z}_{11} through points (1,5), (2,1), (3,3), (4,4), (5,3), (6,5) and (7,10).

We seek a_4 , a_3 , a_2 , a_1 and a_0 , that satisfy (over \mathbb{Z}_{11} !!)

a 4	+	a 3	+	a 2	+	<i>a</i> 1	+	<i>a</i> 0	=	5
5 <i>a</i> 4	+	8 <i>a</i> 3	+	4 <i>a</i> 2	+	2 <i>a</i> 1	+	<i>a</i> 0	=	1
4 <i>a</i> 4	+	5 <i>a</i> 3	+	9 <i>a</i> 2	+	3 <i>a</i> 1	+	<i>a</i> 0	=	3
3 <i>a</i> 4	+	9 <i>a</i> 3	+	5 <i>a</i> 2	+	4 <i>a</i> 1	+	<i>a</i> 0	=	4
9 <i>a</i> 4	+	4 <i>a</i> 3	+	3 <i>a</i> 2	+	5 <i>a</i> 1	+	<i>a</i> 0	=	3
9 <i>a</i> 4	+	7 <i>a</i> 3	+	3 <i>a</i> 2	+	6 <i>a</i> 1	+	<i>a</i> 0	=	5
3 <i>a</i> 4	+	$2a_{3}$	+	5 <i>a</i> 2	+	7 <i>a</i> 1	+	a_0	=	10

In fact, 5 points suffices. We may restrict ourselves to the first 5 equations (and the first 5 points).

We first calculate partial polynomials p_1, \ldots, p_5 . These polynomials satisfy: $p_i(x_i) = 1$ and also $j \neq i : p_i(x_j) = 0$.

$$p_{1}(x) = \frac{(x-2)(x-3)(x-4)(x-5)}{(1-2)(1-3)(1-4)(1-5)} = \frac{x^{4}+8x^{3}+5x^{2}+10}{2} = 6x^{4} + 4x^{3} + 8x^{2} + 5$$

$$p_{2}(x) = \frac{(x-1)(x-3)(x-4)(x-5)}{(2-1)(2-3)(2-4)(2-5)} = \frac{x^{4}+9x^{3}+4x^{2}+3x+5}{5} = 9x^{4} + 4x^{3} + 3x^{2} + 5x + 1$$

$$p_{3}(x) = \frac{(x-1)(x-2)(x-4)(x-5)}{(3-1)(3-2)(3-4)(3-5)} = \frac{x^{4}+10x^{3}+5x^{2}+10x+7}{4} = 3x^{4} + 8x^{3} + 4x^{2} + 8x + 10$$

$$p_{4}(x) = \frac{(x-1)(x-2)(x-3)(x-5)}{(4-1)(4-2)(4-3)(4-5)} = \frac{x^{4}+8x^{2}+5x+8}{5} = 9x^{4} + 6x^{2} + x + 6$$

$$p_{5}(x) = \frac{(x-1)(x-2)(x-3)(x-4)}{(5-1)(5-2)(5-3)(5-4)} = \frac{x^{4}+x^{3}+2x^{2}+5x+2}{2} = 6x^{4} + 6x^{3} + x^{2} + 8x + 1$$

The desired polynomial is combined from the partial polynomials and from the values in the given points (i, p(i)) as:

$$p(x) = \sum_{i=1}^{3} y_i p_i(x) = 5p_1(x) + p_2(x) + 3p_3(x) + 4p_4(x) + 3p_5(x)$$

= $3x^4 + 5x^2 + 2x + 6$

We may check, whether the other points (6,5), (7,10) lie on p(x) $p(6) = 3 \cdot 6^4 + 5 \cdot 6^2 + 2 \cdot 6 + 6 = 3 \cdot 9 + 5 \cdot 3 + 2 \cdot 6 + 6 = 5$ $p(7) = 3 \cdot 7^4 + 5 \cdot 7^2 + 2 \cdot 7 + 6 = 3 \cdot 3 + 5 \cdot 5 + 2 \cdot 7 + 6 = 10$

Applications

Problem: Given numbers m and n, design m keys so that:

- It is possible to reconstruct a given secret from any combination of *n* keys, but
- it is impossible to reconstruct a given secret from any combination of less than n keys.

Assume that the way the keys are constructed is publicly known.

Solution: Construct a polynomial of degree n-1 and distribute m distinct pairs $(x_i, p(x_i))$ as keys. The secret is the polynomial. The field could be e.g. \mathbb{R} or \mathbb{Z}_p with p > m.

Problem: Can two integers of *n* digits be multiplied in $o(n^2)$ time? Solution:

- lnterpret these integers as polynomials p, q of degree n 1,
- choose 2n pairs (i, p(i)), (i, q(i)) and compute (i, p(i)q(i)),

• then find the coefficients of the product pq in time $O(n \log n)$. The choice of a suitable field and the recurrence behind is the principle of the so called *fast Fourier transform*.