
Polynomials

Definition: A polynomial of degree n in variable x over a field K is
an expression p(x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0,
where an 6= 0 and an, . . . , a0 ∈ K. We write p ∈ K(x).

Operations on polynomials p(x) =
n∑

i=0
aix i , q(x) =

m∑
i=0

bix i :

I addition, subtraction: (p ± q)(x) =
max n,m∑

i=0
(ai ± bi)x i

I scalar multiple: (αp)(x) =
n∑

i=0
(αai)x i

I product (pq)(x) =
n+m∑
i=0

cix i , where ci =
i∑

j=0
ajbi−j

I division with a remainder — there are unique polynomials
r , t ∈ K(x) such that p = qt + r , where the degree of r is less
than m, the degree of q.



Example — operations on polynomials over Z5

Addition:

(3x3 + 2x + 1) + (2x2 + 3x + 1) = 3x3 + 2x2 + 2

the degree may decrease:

(3x3 + 2x + 1) + (2x3 + 3x + 1) = 2

Multiple:
2 · (3x3 + 2x + 1) = x3 + 4x + 2

Product:

(3x3 + 2x + 1)(2x2 + 3x + 1) = x5 + 4x4 + 2x3 + 3x2 + 1



Example — operations on polynomials over Z5

Division with the remainder:

4x5 +2x4 +3x2 +3 : 3x2 + 4x + 2 = 3x3 + 3x + 2
− 4x5− 2x4− x3

4x3 +3x2

− 4x3− 2x2− x
x2 +4x +3

− x2− 3x − 4
x +4

Correctness check p = qt + r :

4x5 + 2x4 + 3x2 + 3 = (3x2 + 4x + 2)(3x3 + 3x + 2) + (x + 4)



Fermat’s little theorem

Theorem: For any x ∈ Zp \ {0} : xp−1 = 1.

Proof: The map i → xi is a bijection on {1, . . . , p − 1} in Zp.

In
p−1∏
i=1

i =
p−1∏
i=1

xi = xp−1
p−1∏
i=1

i cancel the nonzero term
p−1∏
i=1

i .

Corollary: For any x ∈ Zp : xp − x = 0.

Corollary: For any q ∈ Zp(x) there is r ∈ Zp(x) of degree at most
p − 1, such that ∀x ∈ Zp : q(x) = r(x).

Example:

4x5 + 2x4 + 3x2 + 3 = 4(x5 − x) + 2x4 + 3x2 + 4x + 3

i.e. the polynomial q(x) = 4x5 + 2x4 + 3x2 + 3 yields on Z5
the same values as r(x) = 2x4 + 3x2 + 4x + 3.



Roots

Definition: The root of a polynomial p ∈ K(x)
is r ∈ K such that p(r) = 0.

Observation: The element r ∈ K is a root of a polynomial p if and
only if the linear polynomial x − r divides p without a remainder.

Definition: The multiplicity of the root r of p ∈ K(x) is the
maximum positive integer k such that (x − r)k divides p.

Theorem: (The fundamental theorem of algebra)
Every polynomial p ∈ C(x) has at least one root.

Corollary: Every polynomial p ∈ C(x) can be factorized
into linear factors, i.e polynomials of degree one.

Definition: If every p ∈ K(x) of degree at least 1 has a root,
then the field K is algebraically closed.



Representations of polynomials of degree n

I by the coefficients a0, . . . , an
I in algebraically closed fields by an and the n roots r1, . . . , rn
I by the values of the polynomial in n + 1 distinct points

Problem: Given n + 1 pairs (xi , yi) for i = 0, . . . , n, determine
p ∈ K(x) of degree at most n such that p(xi) = yi for all i .

Observation: Coefficients a0, . . . , an of p are solution of the system:
1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

...
... . . . ...

1 xn x2
n . . . xn

n




a0
a1
...

an

 =


y0
y1
...

yn


Definition: The matrix
of this system is the
Vandermonde matrix
Vn+1(x0, . . . , xn)

Theorem: The Vandermonde matrix Vn+1(x0, . . . , xn) is regular
if an only if x0, . . . , xn are distinct.



Proof of the regularity of the Vandermonde matrix

Vn+1(x0, . . . , xn) =


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

...
...

...
. . .

...
1 xn x2

n . . . xn
n


Deduct the first row from others.
Then factor out xi − x0 from the
i-th row for each i = 1, . . . , n.
In the first column are n zeros so
we can expand: det(Vn+1) =

=
n∏

i=1

(xi −x0)·

∣∣∣∣∣∣∣∣
1 x1 + x0 x2

1 + x1x0 + x2
0 . . . xn−1

1 + xn−2
1 x0 + · · · + xn−1

0
1 x2 + x0 x2

2 + x2x0 + x2
0 . . . xn−1

2 + xn−2
2 x0 + · · · + xn−1

0
...

...
...

. . .
...

1 xn + x0 x2
n + xnx0 + x2

0 . . . xn−1
n + xn−2

n x0 + · · · + xn−1
0

∣∣∣∣∣∣∣∣
Now backward subtract from every column the x0-multiple of the previous one.
By this we eliminate all terms containing x0.
Consequently, we get a recurrence that could be expanded as follows:

det(Vn+1(x0, . . . , xn)) =
( n∏

i=1
(xi − x0)

)
det(Vn(x1, . . . , xn))

=
∏
i<j

(xj − xi)



Example for n = 3
det(V4(x0, . . . , x3)) =

=

1 x0 x2
0 x3

0 I

1 x1 x2
1 x3

1 II

1 x2 x2
2 x3

2 III

1 x3 x2
3 x3

3 IV

=

1 x0 x2
0 x3

0 I

0 x1 − x0 x2
1 − x2

0 x3
1 − x3

0 II − I

0 x2 − x0 x2
2 − x2

0 x3
2 − x3

0 III − I

0 x3 − x0 x2
3 − x2

0 x3
3 − x3

0 IV − I

=
x1 − x0 x2

1 − x2
0 x3

1 − x3
0 : (x1 − x0)

x2 − x0 x2
2 − x2

0 x3
2 − x3

0 : (x2 − x0)

x3 − x0 x2
3 − x2

0 x3
3 − x3

0 : (x3 − x0)

= (x1 − x0)(x2 − x0)(x3 − x0)
1 x1 + x0 x2

1 + x1x0 + x2
0

1 x2 + x0 x2
2 + x2x0 + x2

0
1 x3 + x0 x2

3 + x3x0 + x2
0

I II III

=
3∏

i=1
(xi − x0)

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

I II − x0 I III − x0 II

=
( 3∏

i=1
(xi − x0)

)
det(V3(x1, x2, x3))



Lagrange interpolation

. . . an alternative way to interpolate a polynomial p ∈ K(x) of
degree n through n + 1 points (xi , yi) for i = 1, . . . , n + 1.

1. determine n + 1 auxiliary polynomials of degree n

pi(x) =

∏
j 6=i

(x−xj )∏
j 6=i

(xi −xj )
=

= (x−x1)...(x−xi−1)(x−xi+1)...(x−xn+1)
(xi −x1)...(xi −xi−1)(xi −xi+1)...(xi −xn+1)

Observe that pi(xi) = 1 and pi(xj) = 0 for i 6= j .

2. compose p(x) as the linear combination p(x) =
n+1∑
i=1

yipi(x).

Then p(xi) = yipi(xi) = yi as in all the other terms pj(xi) = 0.



Example of Lagrange interpolation
Goal: interpolate a polynomial
p(x) = a4x4 + a3x3 + a2x2 + a1x + a0 over Z11 through points
(1, 5), (2, 1), (3, 3), (4, 4), (5, 3), (6, 5) and (7, 10).

We seek a4, a3, a2, a1 and a0, that satisfy (over Z11 !!)

a4 + a3 + a2 + a1 + a0 = 5
5a4 + 8a3 + 4a2 + 2a1 + a0 = 1
4a4 + 5a3 + 9a2 + 3a1 + a0 = 3
3a4 + 9a3 + 5a2 + 4a1 + a0 = 4
9a4 + 4a3 + 3a2 + 5a1 + a0 = 3
9a4 + 7a3 + 3a2 + 6a1 + a0 = 5
3a4 + 2a3 + 5a2 + 7a1 + a0 = 10

In fact, 5 points suffices. We may restrict ourselves to the first 5
equations (and the first 5 points).



We first calculate partial polynomials p1, . . . , p5.
These polynomials satisfy: pi(xi) = 1 and also j 6= i : pi(xj) = 0.
p1(x) = (x−2)(x−3)(x−4)(x−5)

(1−2)(1−3)(1−4)(1−5) = x4+8x3+5x2+10
2 = 6x4 + 4x3 + 8x2 + 5

p2(x) = (x−1)(x−3)(x−4)(x−5)
(2−1)(2−3)(2−4)(2−5) = x4+9x3+4x2+3x+5

5 = 9x4 + 4x3 + 3x2 + 5x + 1
p3(x) = (x−1)(x−2)(x−4)(x−5)

(3−1)(3−2)(3−4)(3−5) = x4+10x3+5x2+10x+7
4 = 3x4 + 8x3 + 4x2 + 8x + 10

p4(x) = (x−1)(x−2)(x−3)(x−5)
(4−1)(4−2)(4−3)(4−5) = x4+8x2+5x+8

5 = 9x4 + 6x2 + x + 6
p5(x) = (x−1)(x−2)(x−3)(x−4)

(5−1)(5−2)(5−3)(5−4) = x4+x3+2x2+5x+2
2 = 6x4 + 6x3 + x2 + 8x + 1

The desired polynomial is combined from the partial polynomials
and from the values in the given points (i , p(i)) as:

p(x) =
5∑

i=1
yipi(x) = 5p1(x) + p2(x) + 3p3(x) + 4p4(x) + 3p5(x)

= 3x4 + 5x2 + 2x + 6
We may check, whether the other points (6, 5), (7, 10) lie on p(x)
p(6) = 3 · 64 + 5 · 62 + 2 · 6 + 6 = 3 · 9 + 5 · 3 + 2 · 6 + 6 = 5
p(7) = 3 · 74 + 5 · 72 + 2 · 7 + 6 = 3 · 3 + 5 · 5 + 2 · 7 + 6 = 10



Applications
Problem: Given numbers m and n, design m keys so that:
I It is possible to reconstruct a given secret from any

combination of n keys, but
I it is impossible to reconstruct a given secret from any

combination of less than n keys.
Assume that the way the keys are constructed is publicly known.
Solution: Construct a polynomial of degree n − 1 and distribute m
distinct pairs (xi , p(xi)) as keys. The secret is the polynomial.
The field could be e.g. R or Zp with p > m.
Problem: Can two integers of n digits be multiplied in o(n2) time?
Solution:
I Interpret these integers as polynomials p, q of degree n − 1,
I choose 2n pairs (i , p(i)), (i , q(i)) and compute (i , p(i)q(i)),
I then find the coefficients of the product pq in time O(n log n).

The choice of a suitable field and the recurrence behind is the
principle of the so called fast Fourier transform.


