
Lecture notes: Isomorphism testing on cubic graphs

Jǐŕı Fiala, Veronika Sĺıvová and Martin Töpfer

June 14, 2025

The aim of these notes is to survey a part of the Luks’s paper from 1982 [3] for educational
purposes.

Theorem 1. The existence of an isomorphisms between cubic graphs can be decided in polynomial
time.

Overview:

1. Given two cubic graphs Y , Y ′ and create several new graphs X such that Y is isomorphic to Y ′

if and only if at least one of these X has an automorphism which switches one specified edge
e ∈ EX .

2. To describe automorphisms of X we first find an automorphism on a subgraph of X induced by
edges close to e. Then we extend the automorphisms to further distance from e step by step.

3. The extension of automorphisms is reducible to a color automorphism problem. For a colored
set A and a group G of permutations on A we want to find generators of automorphisms on G
which preserve colors.

4. We split G to two subgroups and/or A to smaller G-orbits so that for each reduced problem we
can solve in polynomial time. From the particular solutions we compute a solution for G-orbits
and then we compose it to a solution for G.

1 Reduction of isomorphism to automorphism
Assume first that Y and Y ′ are isomorphic and ψ is such an isomorphism. Choose an arbitrary vertex
v of Y and construct a graph X from the disjoint union of Y and Y ′ by joining v and v′ = ψ(v) with
a new edge e.

The isomorphism ψ straightforwardly yields an automorphism φ of X that transposes the edge e.
If Y and Y ′ are cubic and we aim to get a cubic X as well we may alter the above by choosing some
edge f of Y , and subdivide it by a new vertex v as well as subdivide ψ(f) by v′, see Fig. 1.

On the other hand if the two graphs are not isomorphic, then there is no automorphism that
transpose the edge e in any possible placement of the vertex v as the subdivision of an edge of Y ′.

Y Y ′

ev v′

X

f ′f

Figure 1: Reduction of graph isomorphism to graph automorphism

1

e
X1

X2

X3

X4

1

2
3

4

5

6

a) b)

Be = {{3, 4}}

B1 = {{5}, {6}, {3, 4}, {5, 6}}

B2 = {{1}, {2}}

Figure 2: a) The nested subgraphs X1, X2, . . . of a graph yield a partition of the vertex set into layers
V1, V2, Notice that the edge (1, 2) between two vertices of the layer V2 is contained in the subgraph
X3 but not in X2. If we consider the subgraph X2 then there is an automorphism which switches the
edge e, but in X3 no such automorphism exists.
b) The three color sets Be, B1 and B2 used to determine π3(Aute(X4)).

We reduce a single instance of the graph isomorphism problem to O(|EY |) instances of the graph
automorphism problem, which for a given graph returns a representation of its automorphism group.
A pseudocode of such reduction is described by Algorithm 1.

Note that for bounded degree graphs we have linear dependence between |VY | and |EY |, namely
|EY | = 3|VY |

2 for cubic graphs.

Algorithm 1: Reduction of graph isomorphism to graph automorphism
Input: Graphs Y and Y ′

Query: Is Y isomorphic to Y ′?
1 begin
2 choose an arbitrary edge f ∈ Y ;
3 for each edge f ′ ∈ Y ′ do
4 X := Y ∪ Y ′;
5 subdivide in X the edges f, f ′ with new vertices v, v′;
6 add to X a new edge e between vertices v, v′;
7 if there is an automorphism φ of X s.t. φ(v) = v′ and φ(v′) = v then
8 return ”Y and Y ′ are isomorphic”

9 return ”Y and Y ′ are not isomorphic”

2 From automorphism extension to colored subgroups

2.1 Decomposition into layers
For a graph X and en edge e ∈ EX , let the symbol Xk denotes the subgraph of X induced by the
edges of the paths of length at most k that contain e. The vertex set VX is then partitioned into layers
V1, V2, . . . such that V1 = e and for k ≥ 2 we set Vk = VXk

\ VXk−1 .
Notice that for k ≥ 2, any edge between two vertices from the layer Vk is contained in the graph

Xk+1, see Fig. 2 a).
Let the symbol Aute(Xk) be the set of automorphisms φ of Xk that fix e. These namely satisfy

either φ(u) = u & φ(v) = v or φ(u) = v & φ(v) = u, where u, v are the vertices of e.
Finally, let πk be the projection of the automorphisms of Aute(Xk+1) onto Aute(Xk), namely πk(φ)

is the restriction of the automorphism φ to the subgraph Xk.
The set of generators of Aute(Xk+1) is constructed as the union of the following sets, see Fig. 3:

2

πk(Aute(Xk+1))
Aute(Xk)

Aute(Xk+1)

πk

ker(πk)

id

S

S′

R

Figure 3: The two sets R and S generating Aute(Xk+1)

Xk+1

Xk

u v

Xk−1

Figure 4: Two vertices u, v in the layer Vk+1 are twins. The automorphism of Xk+1 which switches
them, while Xk is fixed, is an element of R.

• R containing the generators of the kernel of πk — notice that these automorphisms only switch
vertices from the layer Vk+1,

• S obtained from the set S ′ of generators of πk(Aute(Xk+1)) such that for each ψ′ ∈ S ′ we insert
into S any ψ such that πk(ψ) = ψ′. In other words, as each generator of πk(Aute(Xk+1)) is only
an automorphism of Xk, we insert into S any of its extensions onto Xk+1.

It holds that Aute(Xk+1) = ⟨R∪S⟩, as for every φ ∈ Aute(Xk+1) we may project φ into Aute(Xk),
express πk(φ) with respect to the generators of Aute(Xk), say πk(φ) = ψ′

1 . . . ψ
′
t. The corresponding

expression with their extensions from S, namely ψ1 . . . ψt, agrees with φ on Xk. The difference
ψ1 . . . ψtφ

−1 belongs to the kernel of πk and hence it could be expressed in terms of R.
It is easy to construct the set R, while getting the set S is more complicated.

2.2 Construction of R
We say that vertices u, v from the layer Vk+1 are twins if N(u) ∩ Vk = N(v) ∩ Vk, see Fig. 4.

Since the degree of each vertex is 3, each vertex in Vk has at most two neighbors (possible twins)
in Vk+1 as it must at least one neighbor in the subgraph Xk.

Therefore, the kernel of πk is generated by the set of transposition of twins, i.e.

R = {(u, v) : u, v are twins in Vk+1}

2.3 Construction of S
Denote by A the set VXk

augmented by all subsets of Vk of size 2 or 3, i.e.: A = VXk
∪

(
Vk

2

)
∪

(
Vk

3

)
.

Each automorphism φ ∈ Aute(Xk) corresponds uniquely to a permutation φ′ ∈ Sym(A) of elements
from A. Consequently the group Aute(Xk) corresponds to some group G ⊆ Sym(A). To capture the
property that φ can be extended into an automorphism of Xk+1 we introduce three subsets of A as
follows, see Fig. 2 b) for an example:

• Be = {{u, v} : u, v ∈ Vk ∧ (u, v) ∈ E(Xk+1)}
. . . these are the new edges inside the layer Vk introduced in the graph Xk+1,

3

• B1 = {a ∈ A : ∃!w ∈ Vk+1 : N(w) = a}
. . . for the tuples that form the neighborhood of one vertex from the new layer Vk+1,

• B2 = {a ∈ A : ∃!w,w′ ∈ Vk+1 : N(w) = N(w′) = a}
. . . neighborhoods of twins from the ne layer.

The sets B1 and B2 are disjoint by the definition. Moreover, B2 and Be are disjoint too, due to
maximum degree 3. Each element of A hence falls into one of the following five subsets viewed as
colors:

B2, B1 ∩Be, B1 \Be, Be \B1, A \ (Be ∪B1 ∪B2).

Lemma 2. A automorphism φ of Xk belongs to the image πk(Aute(Xk+1)) if and only if φ′ belongs
to the subgroup of G which respects the three sets Be, B1 and B2.

Proof. For the forward implication, if a ∈ A and φ′(a) have different colors then φ can not be an
automorphism of Xk+1.

For the opposite implication consider an automorphism φ ∈ Aute(Xk) such that the corresponding
φ′ respects the three sets. For a vertex u ∈ Vk+1 we denote its neighborhood in the previous layer
N(u) ∩ Vk by au ∈ A.

If (u, v) ∈ Be then (φ(u), φ(v)) ∈ Be, so φ respects newly added edges between the vertices of the
layer Vk.

If au ∈ B1 then there exists exactly one u′ such that au′ = φ′(au). We extend φ on u by setting
φ(u) = u′.

If au ∈ B2 then it has a unique twin v ∈ Vk+1 such that av = au. With help of φ′ we identify a
pair of twins u′ and v′ such that a′

v = a′
u = φ′(au). We extend φ on u and v by setting φ(u) = u′

and φ(v) = v′. Though there are two possibilities, we choose any of them, since the other could be
obtained by the transposition (u, v) ∈ R.

So the construction of Aute(Xk+1) now reduces to the problem of how to construct for given
generators of Aute(Xk) the set of generators of its subgroup that respects the given coloring constraints.

3 Representations of permutation groups
The goal of this section is to develop methods that would allow us to represent possibly exponentially
large permutation groups and their cosets by polynomially many elements, as well as be able to
perform membership tests and unions.

We assume the permutation group Sym(A) acting on a set A with the composition operation
defined for α, β ∈ Sym(A) as follows: ∀a ∈ A : (αβ)(a) = β(α(a)) where the left to right order of
permutations on the composition corresponds to the order of application of them on A. We adopt
the notation that Latin letters like a, b or ai stand for the elements of the ground set A, while Greek
minuscules represents group elements, i.e. the permutations.

For a group G ⊆ Sym(A) and an arbitrary order of the elements of A = {a1, . . . an}, we denote by
Gi the subgroup of G which fixes each of a1, . . . , ai.

Immediately, we get a chain of subgroups:

{id} = Gn = Gn−1 ⊆ Gn−2 ⊆ . . . ⊆ G2 ⊆ G1 ⊆ G0 = G

Definition. Let G be a group, H be a subgroup and β be any element of G. Then βH = {βα, α ∈ H}
is the left coset of H in the group G.

4

a1

a2

a5

α

a3

β0 β1 β2

a4

= β3

Figure 5: Composing α on n = 5 elements from coset representatives β0 · · · β3.

We aim to represent G with sets Ci for i ∈ {0, . . . , n− 2}, where each such Ci contains representa-
tives of left cosets of the subgroup Gi+1 in the group Gi. In other words Gi is the union of left cosets
of Gi+1, formally written as: Gi = ⋃

β∈Ci

βGi+1. Immediately we get that |G| =
n−2∏
i=0

|Ci|.

Our goal is to represent any α ∈ G by a chain of permutations β0β1 · · · βn−2, where each βi is a
coset representative from Ci. As Ci contains only permutations in which the elements aj for j < i are
fixed, the chain β0β1 · · · βn−2 can be viewed as a sequence of permutations where one-by-one βi selects
the correct preimage of ai+1 when β0, . . . , βi−1 are already fixed, see Fig. 5.

For this purpose we use the following filtering procedure which for a (not necessarily complete set)
of coset representatives either finds such a decomposition of a given α, or extends some of the sets so
that it exists.

Algorithm 2: Filter(α)
Input: α ∈ Sym(A), G ⊆ Sym(A) given by sets C0, . . . , Cn−2
Output: β0, β1, . . . , βn−2 so that βi ∈ Ci and α = β0β1 · · · βn−2 if α ∈ G;
otherwise one Ci is in addition extended to generate ⟨G ∪ α⟩

1 begin
2 α0 := α;
3 for i = 0 to n− 2 do
4 foreach βi ∈ Ci do
5 if α−1

i (ai+1) = β−1
i (ai+1) then

6 αi+1 := β−1
i αi;

7 keep the current value of βi and exit to the next round of the for loop

// no coset representative of Gi+1 was found
8 add αi to Ci;
9 βi := αi;

10 αi+1 := id
11 return β0, β1, . . . , βn−2

Observe that the test α−1
i (ai+1) = β−1

i (ai+1) is equivalent to β−1
i αi ∈ Gi+1, which could be

rephrased that αi belongs to the coset of Gi+1 in Gi represented by βi. So if no βi represents such
coset, it is appropriate to add at line 8 the present value of αi as a new representative. Then as every
subgroup contains the identity all further findings of βi ∈ Ci succeed and no more coset representatives
will be added.

From the assignments at line 6, namely α1 = β−1
0 α0, α2 = β−1

1 α1,. . . follows: α0 = β0α1,
α1 = β1α2,. . . and in consequence also:

α = α0 = β0α1 = β0β1α2 = · · · = β0β1 · · · βn−2

Moreover, for a representative βi the only relevant information was the value of β−1
i (ai+1). By

keeping only one representative for each coset, i.e. representatives that differ on β−1
i (ai+1), the size of

5

each Ci is at most n− i.

Claim 3. The time complexity of Filter(α) is O(n2), where n = |A|.

Proof. Assume first that each permutation α is represented as two arrays of images [α(a1), α(a2), . . .],
and [α−1(a1), α−1(a2), . . .]. When α has to be stored, the inverse α−1 can be computed in O(n) time.

The for loop at line 3 is executed O(n) times. Each its iteration requires only O(n) time, because
even though the foreach loop at line 4 is iterated O(n) times, the if test at line 5 requires only O(1)
time, and if it succeeds, the assignment at line 6 will be performed only once as it quits the foreach
loop.

Analogously, when no coset representative was found, the commands at lines 8 –10 require O(n)
time, but are performed at most once in the whole execution of Filter(α).

In the next step we show how to assure that each element of G has a unique expression with
respect to the given coset representatives.

Definition. We say that C0, . . . Cn−2 are the sets of strong generators iff

∀α ∈ G ∃!β0, β1, . . . , βn−2 : βi ∈ Ci ∧ α = β0 · · · βn−2.

Lemma 4. Let C0, . . . Cn−2 be the sets of coset representatives for a chain of subgroups of G. If for
each i, j ∈ {0, . . . n − 2} with i ≤ j and each σ ∈ Ci and τ ∈ Cj holds that τσ could be expressed as
β0 · · · βn−2 with βi ∈ Ci then any α ∈ ⟨C0 ∪ · · · ∪ Cn−2⟩ has such expression as well.

Proof. Assume α = γ1 · · · γm and for j ∈ {1, . . . ,m} choose ij so that γj ∈ Cij
.

We first determine the set {l : il−1 ≥ il}. If it is empty then the sequence γ1 · · · γm (perhaps padded
with the identity maps when necessary) is the desired expression of α.

The we select the subset with the smallest value of il, and finally, out of these let k be the maximum
of this set, see Fig. 6. By the choice, this k has the following property:

• ik−1 ≥ ik

• ∀l > k : il > ik

• ∀il < ik : il−1 < il

We apply the lemma assumption for σ = γk and τ = γk−1. Thus γk−1γk = τσ = βik
· · · βn−2 and if

we substitute this term in the expression of α, we obtain α = γ1 · · · γk−2βik
· · · βn−2γk+1 · · · γm.

Observe that after this replacement each il with l ≥ k is strictly greater than the former value of
ik. Therefore either the maximum of its subset attaining the minimal value il, i.e. the value of k has
decreased, see Fig. 6 a) or the minimum of {l : il−1 ≥ il} has increased, see Fig. 6 b).

As each index il is bounded by n − 2 and k is non-negative, after finitely many iterations of the
above argument (in each round we express the same α but as a different sequence of γ’s) we obtain a
sequence where the set {l : il−1 ≥ il} is empty as wanted.

Now we show how a set S generating a group G can be transformed to a set of strong generators.
The number of coset representatives might be larger than the size of S. For instance consider the cyclic
subgroup of S5 generated by the cyclic permutation (2, 3, 4, 5, 1). This solely permutation generates
the cyclic subgroup, but each of its five elements form a unique coset of the (only) subgroup {id}, so
|C1| = 5 > 1 = S = {(2, 3, 4, 5, 1)}.

To obtain a set of strong generators we shall not only filter the generators of the subgroup to get
coset representatives but also all their possible compositions of to assure that assumptions of Lemma 4
are satisfied. A näıve approach is summarized in the Algorithm 3.

The correctness of the algorithms follows from the fact that all elements of S were filtered, so
G = ⟨C0 ∪ · · · ∪ Cn−2⟩ and by Lemma 4.

Claim 5. The time complexity of Strong generators is O(|S|n2 + n7), where n = |A|.

6

γ1α = γ2

i1
i2

ik

ik−1

γkγk−1

{l: il−1 ≥ il}

γm

im

0

n− 2

1

βik · · ·βn−2

its subset with the
minimal value of il

· · · · · · γ1= γ2

i1
i2

γm· · ·γk+1γk−2

before after

γ1α =

i1

ik

ik−1

γm

im

0

n− 2

1

βik · · ·βn−2γ1=

i1

γm· · ·

before after

k decreased

γkγk−1· · · · · ·γk+1γk−2

γk+1

γk+1

· · · γk−2

· · · γk−2

ik increased

γ2 γ2

i2 i2

a)

b)

Figure 6: Example of the choice of k and the corresponding ik.
a) The replacement of γk−1γk with βik

· · · βn−2 decreased k. b) The replacement increased ik.

Algorithm 3: Strong generators (S)
Input: A generating set S of a group G
Output: Sets of strong generators C0, . . . , Cn−2 for G

1 begin
2 for i := 0 to n− 2 do Ci := {id};
3 foreach α ∈ S do Filter(α);
4 for i := 0 to n− 2 do
5 repeat
6 foreach σ ∈ Ci do
7 foreach τ ∈ Cj, j ≥ i do
8 Filter(τσ)

9 until no coset representative was added by filtration at line 8 ;
10 return C0, . . . , Cn−2

7

a1 a2 a3

a4 a5 a6

Γ
α : (a1, a4, a2)

Generators of G (i.e. the set S)

β : (a1, a4), (a2, a5), (a3, a6)

in the cyclic notation:

Figure 7: Example of the graph Γ constructed by Algorithm 4. Here A = {a1, . . . , a6}, the group G is
represented by two generators α (blue) and β (red). The group G has two orbits: {a1, a2, a4, a5} and
{a3, a6}. The orbit of a1 contains a5, because for γ = α2β ∈ G we have γ(a1) = a5.

Proof. The term O(|S|n2) stands for filtering the generators from the set S at line 3.
The addition tested at line 9 may happen at most O(n2) times; for each there are O(n) choices of

σ, O(n2) choices of τ and for each such combination O(n2) time spent on filtration.

We could get more efficient code if a queue of the newly added elements is used instead the
repeat–until loop.

Recall that the index of a subgroup H in a group G is the ratio |G|
|H| .

Lemma 6. Let H be a subgroup of G ⊆ Sym(A). If H has a polynomial index in G and the membership
test for H can be performed in polynomial time then from any set S of polynomially many generators
of G we can construct the set of strong generators for H in polynomial time.

Proof. We alter slightly Algorithm 3 for finding strong generators by adding the set C−1 of coset
representatives of H in G. This can be done by adding one more filtration step to the beginning of
the Algorithm 2. We start with filtration whether β−1α ∈ H for some β ∈ C−1 and if not, then we
add α to C−1.

From assumptions we know that the additional filtration step can be done in polynomial time.
Also because H has a polynomial index in G we add some α to C−1 at most polynomially many times.

The resulting set of strong generators for H is C0, . . . Cn−2.

4 Concepts from group theory
We say that G acts on A, or that G is an action on A, if G ⊆ Sym(A). (More properly, an action of a
group G on a set A is a homomorphism G → Sym(A), but we keep our actions faithful, i.e. injective,
and such could be seen just as subgroups of Sym(A).)

We say that G ⊆ Sym(A) stabilizes B ⊆ A, or equivalently that B is G-stable, if

∀α ∈ G : α(B) = B.

The G-orbit of an element a ∈ A is the set {α(a) : α ∈ G}. A group G is a transitive action, or
equivalently that G acts transitively, if it has exactly one orbit.

The following Algorithm 4 splits a group G into orbits. See Fig. 7 for an example. We later use it
for branching to smaller problems by divide & conquer technique.

Claim 7. The time complexity of Orbits is O(|S| · |A|). In particular, for n = |A| and |S| = O(n2)
the complexity is O(n3).

The order of an element α is the smallest k ∈ N such that αk = id. We call a group G a p-group,
where p is a prime, if each element of G has order pi for some i. Consequently, the order of G is also
a power of p.

Since each subgroup of a p-group is also a p-group [5], then by the construction of sets R and S
from Sections 2.2 and 2.3 we have:

Fact 8. For each k, the group Aute(Xk) is a 2-group.

8

Algorithm 4: Orbits (S,A)
Input: Action G on a set A given by a set S of generators, i.e. G = ⟨S⟩
Output: Orbits of G on A

1 begin
2 create the empty graph Γ on the vertex set A;
3 foreach α ∈ S, a ∈ A do
4 add the edge (a, α(a));
5 return connected components of Γ

a1

a2

a3

a4

a5

a6

a7

a8

α ∈ G
a1 a5

a2

a2 a6

a4 a8 a3 a7

b1

b4
b3

b2

b1

b4 b3

b2

c1 c2

c1

c2b1
b2

b3

b4

a) b) c)

Figure 8: a) Example of two block systems for G = ⟨α⟩ on A = {a1, . . . , a8}, where {b1, . . . , b4} is not
minimal and {c1, c2} = {{a1, a3, a5, a7}, {a2, a4, a6, a8}} is minimal. b) The action of α on the blocks
b1, . . . , b4. c) The block system obtained in the second iteration of Algorithm 5 corresponds to the
minimal block system {c1, c2} on A.

We say that a set B ⊆ A is a G-block if ∀α ∈ G: B = α(B) or B ∩ α(B) = ∅. If B is a G-block,
then the set {α(B) : α ∈ G} is a partition of A into disjoint sets of equal size.

Observation 9. If a group G is transitive on A, then G is transitive also on G-blocks.

A transitive group G acts primitively on A if it does not have blocks of size greater than 1.

Definition. A nontrivial block system B = {B1, . . . , Bk}, k ≥ 2 is minimal if G acts primitively on
its blocks B1, . . . , Bk.

It means that it has the minimal number of blocks and we cannot merge any remaining blocks,
see Fig. 8 a).

The following lemma is well known:

Lemma 10 ([5]). If G is a transitive p-group action on A, |A| > 1 then each nontrivial minimal
G-block system has exactly p blocks.

Proof. Let B be a minimal G-block system. In this proof all actions of G and its subgroups are
considered on B.

Denote by G1 the subgroup of G that stabilizes the first block B1 ∈ B, namely G1 = {α ∈ G :
α(B1) = B1}. Consider a subgroup H of G where G1 ⊆ H.

We claim that C = {σB1 : σ ∈ H} is a G-block of B. Whenever B ∈ C ∩ α(C), then B = σB1 =
ατB1 for some σ, τ ∈ H. Thus B1 = σ−1ατB1, so σ−1ατ ∈ G1 and therefore α = σσ−1αττ−1 ∈ H.
Consequently α(C) = C, so C is a G-block as it was claimed.

If there was an H strictly between G1 and G, then B would not be nontrivial and minimal, which
contradicts our assumptions. So G1 is a maximal subgroup of G. Each maximal subgroup of a p-group
has index p. Finally, as G is transitive on B, we get that |B| = G

G1
= p.

9

Algorithm 5: Block system(A, S)
Input: A set S generating a group action G on A = {a1, . . . , an}
Output: A G-block system on A

1 begin
2 for i = 2 to n do
3 create the empty graph Γi on the vertex set A;
4 add (a1, ai) ∈ E(Γi);
5 foreach (a, a′) ∈ E(Γi), α ∈ S do
6 add (α(a), α(a′)) ∈ E(Γi);
7 if Γi is not connected then
8 return connectivity components of Γi

Algorithm 6: Minimal block system (A, S)
Input: A set S generating a transitive p-group action G on A
Output: A minimal G-block system on A

1 begin
2 B = A;
3 repeat
4 B := Block system(B, S)
5 until |B| = p;
6 return B

Our goal is to find a minimal block system. We use the following procedure to make from a given
block system a new block system with fewer blocks.

Correctness of Algorithm 6 follows from the Lemma 10: When the block system has more than
p blocks, there exists i such that a1, ai are in the same block of the minimal block system, hence at
least one graph Γi constructed by Algorithm 5 is disconnected. The corresponding block system need
not to be minimal, so it is necessary to iterate Algorithm 6 until exactly p blocks are obtained, see
Fig. 8 b-c).

Claim 11. The time complexity of Minimal block system is O(|A|3|S|). In particular for n = |A| and
|S| = O(n2) the complexity is O(n5).

Proof. The construction of each Γi needs O(|A|2|S|) time as there are |A|2 pairs (a, a′) and for each |S|
possible shifts. This bound already covers the costO(|A|2) of connectivity test and finding components.

In each loop at line 4 of Algorithm 6 the size of ground set of the block system B is made p times

smaller. Together with the line 2 of Algorithm 5 the graph Γi is generated at most
⌊logp n⌋∑

i=0
n
pi <

pn
p−1 =

O(n) times.

5 Finding color preserving subgroups

5.1 Cosets of permutations preserving colors on a block
For elements a, b ∈ A we write a ∼ b when a has the same color as b.

Notation. For B ⊆ A, K ⊆ Sym(A) we denote by CB(K) is the subset of permutations from K
preserving colors on elements of B (note that we do not require α(b) ∈ B, see Fig. 9), formally:

CB(K) = {α ∈ K : ∀b ∈ B : b ∼ α(b)}.

10

A

Bα ∈ G

b ∼ α(b)a) b=α(b)b) A

B

Figure 9: a) Example of a color preserving action α on B. b) A color preserving action α stabilizing
B.

A

B′

a) b) A

B′′B′

B

B′′

B

CB′′(βG)G βG G βG

αα τ

CB(βG) = CB′(CB′′(βG))

α α

H τH

CB(βH) ∪ CB(βτH)

α

Figure 10: a) Case 1 — G does not act transitively on B. b) Case 2 — G acts transitively on B.

The goal is to determine CA(G). We solve this problem in more general setting, namely, we
determine CB(βG), where B is G-stable, G ⊆ Sym(A) and β ∈ Sym(A). Then for B = A and β = id
we get CA(G).

The two following observations are immediate:

Observation 12. CB(K ∪K ′) = CB(K) ∪ CB(K ′)

Observation 13. CB∪B′(K) = CB(CB′(K))

Lemma 14. If B is G-stable then either CB(βG) = ∅ or CB(βG) is a coset of a subgroup CB(G) of G.

Proof. As B is G-stable then ∀σ, τ ∈ CB(G) we have that σ and τ preserve colors on B, namely
∀b ∈ B : σ(b) ∼ τ(b) ∼ b. Consequently, their composition στ preserves colors as well, i.e. στ(b) ∼ b
and we get that στ ∈ CB(G). Hence CB(G) is a subgroup of Sym(A).

If CB(βG) ̸= ∅ then there exists γ ∈ CB(βG). Especially γ ∈ βG and so βG = γG, as we
may change the coset representative from β to γ. Because γ is color preserving on B, the following
implication holds:

∀α ∈ G,∀b ∈ B : α(b) ∈ B ⇒ γα(b) ∼ α(b),
The assumption of the implication is valid for all α ∈ G as B is G-stable, so we obtain:

α ∈ CB(G) ⇔ γα ∈ CB(γG)

because either both α(b) and γα(b) have the same color as b or none of them.
Therefore CB(γG) = γCB(G), in other words CB(γG) is a coset of CB(βG).

5.2 Recursive coset calculation
In order to determine CB(βG) we distinguish two cases:

Case 1. The group G does not act transitively on B, see Fig. 10 a).

There is more than one G-orbit on B, so there exist blocks B′, B′′ such that B = B′ ∪B′′ and both
B′, B′′ are G-stable. We use the Observation 13 and get:

CB(βG) = CB′(CB′′(βG))

Case 2. The group G acts transitively on B, see Fig. 10 b).

11

Due to Fact 8 and Lemma 10 we use Algorithm 6 and split B into two G-blocks B′ and B′′ such
that B = B′ ∪B′′.

In the next step we determine generators of a subgroup H, which stabilizes B′ as follows: The
membership of any permutation α in H can be decided in polynomial time by checking whether
∀b ∈ B′ : α(b) ∈ B′. Also as G = H ∪ τH, where τ is a permutation which switches blocks B′ and
B′′, we get that the index of H in G is 2. So we can compute generators of the subgroup H from
generators of G in polynomial time due to Lemma 6. Note that H stabilizes B′′ as well.

Due to Observation 12 (for G = H ∪ τH) and Observation 13 (for B = B′ ∪ B′′) the following
continued equality holds:

CB(βG) = CB(βH ∪ βτH) = CB(βH) ∪ CB(βτH) = CB′(CB′′(βH)) ∪ CB′(CB′′(βτH))

By Lemma 14 the first set CB′(CB′′(βH)) is either empty or could be expressed as γCB(H) for a
suitable γ ∈ G. Similarly, the second set is either empty or could be written as δCB(H) for a δ ∈ G.

If both are nonempty then Lemma 14 guarantees that CB′(CB′′(βH)) and CB′(CB′′(βτH)), or equiva-
lently γCB(H) and δCB(H), ”must paste together neatly to a single coset”[3], namely γ ⟨CB(H) ∪ γ−1δ⟩.

It remains to describe the situation when the recursion stops, i.e. when |B| = 1. Then we have
directly

CB(βG) = C{b}(βG) =
βG if β(b) ∼ b,

∅ otherwise.

Algorithm 7: CB(βG)
Input: A G-stable set B ⊆ A, β ∈ Sym(A) and a 2-group G given by a set S of generators
Output: Coset CB(βG) w.r.t. ∼ on A, described by generators and a representative

1 begin
2 if |B| = 1 with B = {b} then
3 if β(b) ∼ b then return βG ;
4 else return ∅;
5 else if |Orbits(S,B)| > 1 then

// G does not act transitively on B
6 B′ := any component of Orbits(S,B);
7 B′′ := B \B′;
8 return CB′(CB′′(βG))
9 else

// G acts transitively on B
10 {B′, B′′} := Minimal block system(B, S);
11 S ′ := Strong generators(S) of a subgroup H ⊂ G that stabilizes B′;
12 τ := any element of G \H;
13 if CB′(CB′′(βH)) = ∅ then return CB′(CB′′(βτH));
14 else
15 if CB′(CB′′(βτH)) = ∅ then return CB′(CB′′(βH));
16 else
17 γCB(H) := CB′(CB′′(βH));
18 δ := any element of CB′(CB′′(βτH));
19 return γ⟨CB(H) ∪ γ−1δ⟩

Claim 15. The time complexity of Algorithm 7 for computing CB(βG) is O(|B|3|S| + |B|7). In
particular for n = |B| and |S| = O(n2) the complexity is O(n7).

12

Proof. Let T (b, s) be the running time of CB(βG) for b = |B| and s = |S| generating G.
Line 5 requires O(bs) time by Claim 7.
The recursive call at line 8 requires T (b′, s) + T (b′′, s) time with b = b′ + b′′ and b′, b′′ ≥ 1.
In the other branch, line 10 requires O(b3s) time by Claim 11. Line 11 requires O(b2s + b7) time

by Claim 5. At lines 13 –19 there are two recursive calls of CB′(CB′′(βH)) and CB′(CB′′(βτH)), both
of which require 2T (b

2 , s− 1) time.
In total we have:

T (b, s) ≤ O(bs) + max{T (b′, s) + T (b′′, s), 4T (b
2 , s− 1) +O(b3s+ b7)}

By Master theorem, the overall complexity is driven by the term O(b3s + b7). It outperforms the
O(b2) complexity of the 4T (b

2 , s− 1) in the recursion.

6 Finalizing the algorithm
The following algorithm summarizes all the steps described so far.

Algorithm 8: Generators of Aute(X)
Input: A cubic graph X and e ∈ EX

Output: Generators of the group Aute(X)
1 begin
2 k := 1;
3 S1 := the only generator of Sym(e) transposing e;
4 repeat
5 A := VXk

∪
(

Vk

2

)
∪

(
Vk

3

)
;

6 determine ∼ on A according to the three sets Be, B1 and B2;
7 S ′ := generators of CA(⟨Sk⟩);
8 k++;
9 R := {(u, v) : u, v are twins in Vk};

10 Sk := R ∪ {π−1
k−1(φ) : φ′ ∈ S ′};

11 until X = Xk;
12 return Sk

Claim 16. The time complexity of Algorithm 8 for computing generators of Aute(X) is O(n21), where
n = |VX |.

Proof. The sum s of the sizes of the sets A constructed at line 5 is s = O(n3). The most demanding
computation is performed at line 7 which by Claim 15 requires O(s7) = O((n3)7) = O(n21) operations,
when summarized over all iterations of the repeat–until cycle.

6.1 Concluding remarks
Isomorphism of cubic graphs can indeed be tested in O(n3 log n) time [1]. For further reading see also
monograph [2] and PhD thesis [4].

References
[1] Zvi Galil, Christoph M. Hoffmann, Eugene M. Luks, Claus P. Schnorr, and Andreas Weber. An

O(n3 log n) deterministic and an O(n3) Las Vegas isomorphism test for trivalent graphs. Journal
of the ACM, 34(3):513–531, July 1987.

13

[2] Christoph M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism, volume 136 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin-Heidelberg-New York, 1982.

[3] Luks, Eugene M. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of computer and system sciences, 1982.

[4] Adria Alcala Mena. Trivalent Graph isomorphism in polynomial time. PhD thesis, Universidad de
Cantabria, 2012.

[5] Wielandt, Helmut. Finite permutation groups. New York: Academic Press, 1964.

14

	Reduction of isomorphism to automorphism
	From automorphism extension to colored subgroups
	Decomposition into layers
	Construction of R
	Construction of S

	Representations of permutation groups
	Concepts from group theory
	Finding color preserving subgroups
	Cosets of permutations preserving colors on a block
	Recursive coset calculation

	Finalizing the algorithm
	Concluding remarks

