Ramsey numbers of ordered graphs

Martin Balko, Josef Cibulka, Karel Král, and Jan Kynčl
Charles University in Prague, Czech Republic

February 27, 2016

Ramsey theory

Ramsey theory

- "Every sufficiently large system contains a well-organized subsystem."

Ramsey theory

- "Every sufficiently large system contains a well-organized subsystem."

Ramsey's theorem for graphs

For every collection G_{1}, \ldots, G_{c} of graphs there is a sufficiently large $N=N\left(G_{1}, \ldots, G_{c}\right)$ such that every c-coloring of the edges of K_{N} contains a copy of G_{i} in color i for some $i \in[c]$.

Ramsey theory

- "Every sufficiently large system contains a well-organized subsystem."

Ramsey's theorem for graphs

For every collection G_{1}, \ldots, G_{c} of graphs there is a sufficiently large $N=N\left(G_{1}, \ldots, G_{c}\right)$ such that every c-coloring of the edges of K_{N} contains a copy of G_{i} in color i for some $i \in[c]$.

- Ramsey number $R\left(G_{1}, \ldots, G_{c}\right)$ of G_{1}, \ldots, G_{c} is the smallest such N.
- If all G_{1}, \ldots, G_{c} are isomorphic to G, we write $\mathrm{R}(G ; c)$ or $\mathrm{R}(G)$ if $c=2$.

Ramsey theory

- "Every sufficiently large system contains a well-organized subsystem."

Ramsey's theorem for graphs

For every collection G_{1}, \ldots, G_{c} of graphs there is a sufficiently large $N=N\left(G_{1}, \ldots, G_{c}\right)$ such that every c-coloring of the edges of K_{N} contains a copy of G_{i} in color i for some $i \in[c]$.

- Ramsey number $R\left(G_{1}, \ldots, G_{c}\right)$ of G_{1}, \ldots, G_{c} is the smallest such N.
- If all G_{1}, \ldots, G_{c} are isomorphic to G, we write $R(G ; c)$ or $R(G)$ if $c=2$.
- Classical bounds of Erdős and Szekeres: $2^{n / 2} \leq R\left(K_{n}\right) \leq 2^{2 n}$.

Ramsey theory

- "Every sufficiently large system contains a well-organized subsystem."

Ramsey's theorem for graphs

For every collection G_{1}, \ldots, G_{c} of graphs there is a sufficiently large $N=N\left(G_{1}, \ldots, G_{c}\right)$ such that every c-coloring of the edges of K_{N} contains a copy of G_{i} in color i for some $i \in[c]$.

- Ramsey number $R\left(G_{1}, \ldots, G_{c}\right)$ of G_{1}, \ldots, G_{c} is the smallest such N.
- If all G_{1}, \ldots, G_{c} are isomorphic to G, we write $R(G ; c)$ or $R(G)$ if $c=2$.
- Classical bounds of Erdős and Szekeres: $2^{n / 2} \leq R\left(K_{n}\right) \leq 2^{2 n}$.

Example:

$$
\mathrm{R}\left(K_{3}\right)=\mathrm{R}\left(C_{4}\right)=6
$$

Ordered graphs

Ordered graphs

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.

Ordered graphs

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- $\left(H, \prec_{1}\right)$ is an ordered subgraph of $\left(G, \prec_{2}\right)$ if $H \subseteq G$ and $\prec_{1} \subseteq \prec_{2}$.

Ordered graphs

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- $\left(H, \prec_{1}\right)$ is an ordered subgraph of $\left(G, \prec_{2}\right)$ if $H \subseteq G$ and $\prec_{1} \subseteq \prec_{2}$.
- The ordered Ramsey number $\overline{\mathrm{R}}\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}\right)$ for ordered graphs $\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}$ is the least number N such that every c-coloring of edges of \mathcal{K}_{N} contains \mathcal{G}_{i} of color i for some $i \in[c]$ as an ordered subgraph.

Ordered graphs

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- $\left(H, \prec_{1}\right)$ is an ordered subgraph of $\left(G, \prec_{2}\right)$ if $H \subseteq G$ and $\prec_{1} \subseteq \prec_{2}$.
- The ordered Ramsey number $\overline{\mathrm{R}}\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}\right)$ for ordered graphs $\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}$ is the least number N such that every c-coloring of edges of \mathcal{K}_{N} contains \mathcal{G}_{i} of color i for some $i \in[c]$ as an ordered subgraph.

Observation

For ordered graphs $\mathcal{G}_{1}=\left(G_{1}, \prec_{1}\right), \ldots, \mathcal{G}_{c}=\left(G_{c} \prec_{c}\right)$ we have

$$
\mathrm{R}\left(G_{1}, \ldots, G_{c}\right) \leq \overline{\mathrm{R}}\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}\right) \leq \mathrm{R}\left(K_{\mid V\left(G_{1}| |\right.}, \ldots, K_{\left|V\left(G_{c}\right)\right|}\right) .
$$

Ordered graphs

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- $\left(H, \prec_{1}\right)$ is an ordered subgraph of $\left(G, \prec_{2}\right)$ if $H \subseteq G$ and $\prec_{1} \subseteq \prec_{2}$.
- The ordered Ramsey number $\overline{\mathrm{R}}\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}\right)$ for ordered graphs $\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}$ is the least number N such that every c-coloring of edges of \mathcal{K}_{N} contains \mathcal{G}_{i} of color i for some $i \in[c]$ as an ordered subgraph.

Observation

For ordered graphs $\mathcal{G}_{1}=\left(G_{1}, \prec_{1}\right), \ldots, \mathcal{G}_{c}=\left(G_{c} \prec_{c}\right)$ we have

$$
\mathrm{R}\left(G_{1}, \ldots, G_{c}\right) \leq \overline{\mathrm{R}}\left(\mathcal{G}_{1}, \ldots, \mathcal{G}_{c}\right) \leq \mathrm{R}\left(K_{\left|V\left(G_{1}\right)\right|}, \ldots, K_{\left|V\left(G_{c}\right)\right|}\right) .
$$

Example:
Ch(
\mathcal{C}_{B}

$\overline{\mathrm{R}}\left(\mathcal{C}_{B}\right)=11$

$\overline{\mathrm{R}}\left(\mathcal{C}_{C}\right)=14$

Known results

Known results

- The k-uniform monotone path $\left(P_{n}^{k}, \prec_{\text {mon }}\right)$ is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.

Known results

- The k-uniform monotone path $\left(P_{n}^{k}, \prec_{\text {mon }}\right)$ is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.

Known results

- The k-uniform monotone path $\left(P_{n}^{k}, \prec_{\text {mon }}\right)$ is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.

- $t_{h}(x)$ is a tower function given by $t_{1}(x)=x$ and $t_{h}(x)=2^{t_{h-1}(x)}$.

Known results

- The k-uniform monotone path $\left(P_{n}^{k}, \prec_{\text {mon }}\right)$ is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.

- $t_{h}(x)$ is a tower function given by $t_{1}(x)=x$ and $t_{h}(x)=2^{t_{h-1}(x)}$.
- Choudum and Ponnusamy, 2002:
$\overline{\mathrm{R}}\left(\left(P_{n_{1}}, \prec_{\text {mon }}\right), \ldots,\left(P_{n_{c}}, \prec_{\text {mon }}\right)\right)=1+\prod_{i=1}^{c}\left(n_{i}-1\right)$.
- Fox, Pach, Sudakov, and Suk, 2011:
$t_{k-1}\left(C n^{c-1}\right) \leq \overline{\mathrm{R}}\left(\left(P_{n}^{k}, \prec_{\text {mon }}\right) ; c\right) \leq t_{k-1}\left(C^{\prime} n^{c-1} \log n\right)$.
- Moshkovitz and Shapira, 2012:
$t_{k-1}\left(n^{c-1} / 2 \sqrt{c}\right) \leq \overline{\mathrm{R}}\left(\left(P_{n}^{k}, \prec_{\text {mon }}\right) ; c\right) \leq t_{k-1}\left(2 n^{c-1}\right)$.
- Cibulka, Gao, Krčál, Valla, and Valtr, 2013:

Every ordered path \mathcal{P}_{n} satisfies $\overline{\mathrm{R}}\left(\mathcal{P}_{n}\right) \leq O\left(n^{\log n}\right)$.

Known results

- The k-uniform monotone path $\left(P_{n}^{k}, \prec_{\text {mon }}\right)$ is a k-uniform hypergraph with n vertices and edges formed by k-tuples of consecutive vertices.

- $t_{h}(x)$ is a tower function given by $t_{1}(x)=x$ and $t_{h}(x)=2^{t_{h-1}(x)}$.
- Choudum and Ponnusamy, 2002:
$\overline{\mathrm{R}}\left(\left(P_{n_{1}}, \prec_{\text {mon }}\right), \ldots,\left(P_{n_{c}}, \prec_{\text {mon }}\right)\right)=1+\prod_{i=1}^{c}\left(n_{i}-1\right)$.
- Fox, Pach, Sudakov, and Suk, 2011:
$t_{k-1}\left(C n^{c-1}\right) \leq \overline{\mathrm{R}}\left(\left(P_{n}^{k}, \prec_{\text {mon }}\right) ; c\right) \leq t_{k-1}\left(C^{\prime} n^{c-1} \log n\right)$.
- Moshkovitz and Shapira, 2012:
$t_{k-1}\left(n^{c-1} / 2 \sqrt{c}\right) \leq \overline{\mathrm{R}}\left(\left(P_{n}^{k}, \prec_{\text {mon }}\right) ; c\right) \leq t_{k-1}\left(2 n^{c-1}\right)$.
- Cibulka, Gao, Krčál, Valla, and Valtr, 2013:

Every ordered path \mathcal{P}_{n} satisfies $\overline{\mathrm{R}}\left(\mathcal{P}_{n}\right) \leq O\left(n^{\log n}\right)$.

- Similar results discovered independently by Conlon, Fox, Lee, and Sudakov, 2014+.

Specific orderings: ordered stars I

Specific orderings: ordered stars I

- Unordered case (Burr and Roberts, 1973):

$$
\mathrm{R}\left(K_{1, n-1} ; c\right)= \begin{cases}c(n-2)+1 & \text { if } c \equiv n-1 \equiv 0(\bmod 2) \\ c(n-2)+2 & \text { otherwise }\end{cases}
$$

Specific orderings: ordered stars I

- Unordered case (Burr and Roberts, 1973):

$$
\mathrm{R}\left(K_{1, n-1} ; c\right)= \begin{cases}c(n-2)+1 & \text { if } c \equiv n-1 \equiv 0(\bmod 2) \\ c(n-2)+2 & \text { otherwise }\end{cases}
$$

- Possible orderings:

Specific orderings: ordered stars I

- Unordered case (Burr and Roberts, 1973):

$$
\mathrm{R}\left(K_{1, n-1} ; c\right)= \begin{cases}c(n-2)+1 & \text { if } c \equiv n-1 \equiv 0(\bmod 2) \\ c(n-2)+2 & \text { otherwise }\end{cases}
$$

- Possible orderings:

$$
\mathcal{S}_{r, s}
$$

Specific orderings: ordered stars I

- Unordered case (Burr and Roberts, 1973):

$$
\mathrm{R}\left(K_{1, n-1} ; c\right)= \begin{cases}c(n-2)+1 & \text { if } c \equiv n-1 \equiv 0(\bmod 2) \\ c(n-2)+2 & \text { otherwise }\end{cases}
$$

- Possible orderings:

$$
\mathcal{S}_{r, s}
$$

- The 2-colored ordered case was resolved by Choudum and Ponnusamy.

Specific orderings: ordered stars II

Specific orderings: ordered stars II

Theorem (Choudum and Ponnusamy, 2002)

For positive integers r_{1}, r_{2}, we have $\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{1, r_{2}}\right)=r_{1}+r_{2}-2$ and for $r_{2} \geq r_{1}>2$

$$
\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{r_{2}, 1}\right)=\left\lfloor\frac{-1+\sqrt{1+8\left(r_{1}-2\right)\left(r_{2}-2\right)}}{2}\right\rfloor+r_{1}+r_{2}-2
$$

For arbitrary ordered stars we have

$$
\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{r_{2}, s_{2}}\right)=\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{r_{2}, 1}\right)+r_{1}+s_{2}-3
$$

and

$$
\overline{\mathrm{R}}\left(\mathcal{S}_{r_{1}, s_{1}}, \mathcal{S}_{r_{2}, s_{2}}\right)=\overline{\mathrm{R}}\left(\mathcal{S}_{r_{1}, 1}, \mathcal{S}_{r_{2}, s_{2}}\right)+\overline{\mathrm{R}}\left(\mathcal{S}_{1, s_{1}}, \mathcal{S}_{r_{2}, s_{2}}\right)-1 .
$$

Specific orderings: ordered stars II

Theorem (Choudum and Ponnusamy, 2002)

For positive integers r_{1}, r_{2}, we have $\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{1, r_{2}}\right)=r_{1}+r_{2}-2$ and for $r_{2} \geq r_{1}>2$

$$
\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{r_{2}, 1}\right)=\left\lfloor\frac{-1+\sqrt{1+8\left(r_{1}-2\right)\left(r_{2}-2\right)}}{2}\right\rfloor+r_{1}+r_{2}-2
$$

For arbitrary ordered stars we have

$$
\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{r_{2}, s_{2}}\right)=\overline{\mathrm{R}}\left(\mathcal{S}_{1, r_{1}}, \mathcal{S}_{r_{2}, 1}\right)+r_{1}+s_{2}-3
$$

and

$$
\overline{\mathrm{R}}\left(\mathcal{S}_{r_{1}, s_{1}}, \mathcal{S}_{r_{2}, s_{2}}\right)=\overline{\mathrm{R}}\left(\mathcal{S}_{r_{1}, 1}, \mathcal{S}_{r_{2}, s_{2}}\right)+\overline{\mathrm{R}}\left(\mathcal{S}_{1, s_{1}}, \mathcal{S}_{r_{2}, s_{2}}\right)-1 .
$$

- For the multicolored case the ordered Ramsey numbers remain linear in the number of vertices.

Specific orderings: ordered cycles

Specific orderings: ordered cycles

- Unordered case (Faudree and Schelp, 1974):

$$
\mathrm{R}\left(C_{r}, C_{s}\right)= \begin{cases}2 r-1 & \text { if }(r, s) \neq(3,3) \text { and } 3 \leq s \leq r, s \text { is odd } \\ r+s / 2-1 & \text { if }(r, s) \neq(4,4), 4 \leq s \leq r, r \text { and } s \text { even } \\ \max \{r+s / 2-1,2 s-1\} & \text { if } 4 \leq s<r, s \text { even, } r \text { odd }\end{cases}
$$

Specific orderings: ordered cycles

- Unordered case (Faudree and Schelp, 1974):

$$
\mathrm{R}\left(C_{r}, C_{s}\right)= \begin{cases}2 r-1 & \text { if }(r, s) \neq(3,3) \text { and } 3 \leq s \leq r, s \text { is odd } \\ r+s / 2-1 & \text { if }(r, s) \neq(4,4), 4 \leq s \leq r, r \text { and } s \text { even } \\ \max \{r+s / 2-1,2 s-1\} & \text { if } 4 \leq s<r, s \text { even, } r \text { odd }\end{cases}
$$

- A monotone cycle $\left(C_{n}, \prec_{\text {mon }}\right)$:

Specific orderings: ordered cycles

- Unordered case (Faudree and Schelp, 1974):

$$
\mathrm{R}\left(C_{r}, C_{s}\right)= \begin{cases}2 r-1 & \text { if }(r, s) \neq(3,3) \text { and } 3 \leq s \leq r, s \text { is odd } \\ r+s / 2-1 & \text { if }(r, s) \neq(4,4), 4 \leq s \leq r, r \text { and } s \text { even } \\ \max \{r+s / 2-1,2 s-1\} & \text { if } 4 \leq s<r, s \text { even, } r \text { odd }\end{cases}
$$

- A monotone cycle $\left(C_{n}, \prec_{\text {mon }}\right)$:

Theorem

For integers $r \geq 2$ and $s \geq 2$, we have

$$
\overline{\mathrm{R}}\left(\left(C_{r}, \prec_{\text {mon }}\right),\left(C_{s}, \prec_{\text {mon }}\right)\right)=2 r s-3 r-3 s+6 .
$$

Specific orderings: ordered cycles

- Unordered case (Faudree and Schelp, 1974):

$$
\mathrm{R}\left(C_{r}, C_{s}\right)= \begin{cases}2 r-1 & \text { if }(r, s) \neq(3,3) \text { and } 3 \leq s \leq r, s \text { is odd } \\ r+s / 2-1 & \text { if }(r, s) \neq(4,4), 4 \leq s \leq r, r \text { and } s \text { even } \\ \max \{r+s / 2-1,2 s-1\} & \text { if } 4 \leq s<r, s \text { even, } r \text { odd }\end{cases}
$$

- A monotone cycle $\left(C_{n}, \prec_{\text {mon }}\right)$:

Theorem

For integers $r \geq 2$ and $s \geq 2$, we have

$$
\overline{\mathrm{R}}\left(\left(C_{r}, \prec_{\text {mon }}\right),\left(C_{s}, \prec_{\text {mon }}\right)\right)=2 r s-3 r-3 s+6 .
$$

- Settles a question of Károlyi et al. about geometric Ramsey numbers.

Specific orderings: ordered paths

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R\left(P_{r}, P_{s}\right)=s-1+\left\lfloor\frac{r}{2}\right\rfloor$.

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R\left(P_{r}, P_{s}\right)=s-1+\left\lfloor\frac{r}{2}\right\rfloor$.
- We know that $\overline{\mathrm{R}}\left(\left(P_{n}, \prec_{\text {mon }}\right)\right)=(n-1)^{2}+1$.

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R\left(P_{r}, P_{s}\right)=s-1+\left\lfloor\frac{r}{2}\right\rfloor$.
- We know that $\overline{\mathrm{R}}\left(\left(P_{n}, \prec_{\text {mon }}\right)\right)=(n-1)^{2}+1$.
- The alternating path $\left(P_{n}, \prec_{a l t}\right)$:

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R\left(P_{r}, P_{s}\right)=s-1+\left\lfloor\frac{r}{2}\right\rfloor$.
- We know that $\overline{\mathrm{R}}\left(\left(P_{n}, \prec_{\text {mon }}\right)\right)=(n-1)^{2}+1$.
- The alternating path ($\left.P_{n}, \prec_{\text {alt }}\right)$:

Proposition

For every positive integer $n>2$, we have

$$
2.5 n-O(1) \leq \bar{R}\left(\left(P_{n}, \prec_{\text {alt }}\right)\right) \leq(2+\sqrt{2}) n .
$$

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R\left(P_{r}, P_{s}\right)=s-1+\left\lfloor\frac{r}{2}\right\rfloor$.
- We know that $\overline{\mathrm{R}}\left(\left(P_{n}, \prec_{\text {mon }}\right)\right)=(n-1)^{2}+1$.
- The alternating path $\left(P_{n}, \prec_{a l t}\right)$:

Proposition

For every positive integer $n>2$, we have

$$
2.5 n-O(1) \leq \overline{\mathrm{R}}\left(\left(P_{n}, \prec_{a / t}\right)\right) \leq(2+\sqrt{2}) n .
$$

- Asymptotically different Ramsey numbers for different orderings.

Specific orderings: ordered paths

- Unordered case (Gerensér and Gyárfás, 1967): $R\left(P_{r}, P_{s}\right)=s-1+\left\lfloor\frac{r}{2}\right\rfloor$.
- We know that $\overline{\mathrm{R}}\left(\left(P_{n}, \prec_{\text {mon }}\right)\right)=(n-1)^{2}+1$.
- The alternating path $\left(P_{n}, \prec_{a l t}\right)$:

$\Theta\left(n^{2}\right)$
$\left(P_{n}, \prec_{\text {mon }}\right)$

Proposition

For every positive integer $n>2$, we have

$$
2.5 n-O(1) \leq \overline{\mathrm{R}}\left(\left(P_{n}, \prec_{a / t}\right)\right) \leq(2+\sqrt{2}) n .
$$

- Asymptotically different Ramsey numbers for different orderings.

Bounded-degree ordered graphs

Bounded-degree ordered graphs

- How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Bounded-degree ordered graphs

- How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C=C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$
R(G) \leq C \cdot n
$$

Bounded-degree ordered graphs

- How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C=C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$
R(G) \leq C \cdot n
$$

- Does not hold for ordered graphs.

Bounded-degree ordered graphs

- How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C=C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$
R(G) \leq C \cdot n
$$

- Does not hold for ordered graphs.

Theorem

There are arbitrarily large ordered matchings \mathcal{M}_{n} on n vertices such that

$$
\overline{\mathrm{R}}\left(\mathcal{M}_{n}\right) \geq n^{\frac{\log n}{5 \log \log n}} .
$$

Bounded-degree ordered graphs

- How fast can Ramsey numbers grow for bounded-degree ordered graphs?

Theorem (Chvátal, Rödl, Szemerédi, and Trotter, 1983)

For every $\Delta \in \mathbb{N}$ there exists $C=C(\Delta)$ such that for every graph G with n vertices and maximum degree Δ satisfies

$$
R(G) \leq C \cdot n
$$

- Does not hold for ordered graphs.

Theorem

There are arbitrarily large ordered matchings \mathcal{M}_{n} on n vertices such that

$$
\overline{\mathrm{R}}\left(\mathcal{M}_{n}\right) \geq n^{\frac{\log n}{5 \log \log n}} .
$$

- Conlon et al.: almost every ordered n-vertex matching \mathcal{M}_{n} satisfies

$$
\overline{\mathrm{R}}\left(\mathcal{M}_{n}\right) \geq n^{\Omega\left(\frac{\log n}{(\log \log n}\right)} .
$$

Growth rate for bounded-degree ordered graphs

Growth rate for bounded-degree ordered graphs

Growth rate for bounded-degree ordered graphs

Growth rate for bounded-degree ordered graphs

- The coloring is not constructive.

Growth rate for bounded-degree ordered graphs

- The coloring is not constructive.

Corollary

There is arbitrarily large n-vertex graph G with two orderings \mathcal{G}^{\prime} and \mathcal{G}^{\prime} such that $\bar{R}(\mathcal{G})$ is super-polynomial in n and $\bar{R}\left(\mathcal{G}^{\prime}\right)$ is linear in n.

Small ordered Ramsey numbers I

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

$$
\chi_{<_{\text {mon }}}\left(P_{n}\right)=n
$$

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Proposition

Every ordered matching (M, \prec) with $\chi_{\prec}(M)=2$ and n vertices satisfies

$$
\overline{\mathrm{R}}((M, \prec)) \leq O\left(n^{2}\right)
$$

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Proposition

Every ordered matching (M, \prec) with $\chi_{\prec}(M)=2$ and n vertices satisfies

$$
\overline{\mathrm{R}}((M, \prec)) \leq O\left(n^{2}\right)
$$

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

$\bullet \bullet \bullet\|\bullet \bullet \bullet\| \bullet \bullet \bullet\|\quad \bullet \bullet \bullet\| \bullet \bullet \bullet \| \bullet \bullet \bullet \mid$

Proposition

Every ordered matching (M, \prec) with $\chi_{\prec}(M)=2$ and n vertices satisfies

$$
\overline{\mathrm{R}}((M, \prec)) \leq O\left(n^{2}\right)
$$

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Proposition

Every ordered matching (M, \prec) with $\chi_{\prec}(M)=2$ and n vertices satisfies

$$
\overline{\mathrm{R}}((M, \prec)) \leq O\left(n^{2}\right)
$$

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Proposition

Every ordered matching (M, \prec) with $\chi_{\prec}(M)=2$ and n vertices satisfies

$$
\overline{\mathrm{R}}((M, \prec)) \leq O\left(n^{2}\right)
$$

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Theorem

For arbitrary k and p every k-degenerate ordered graph (G, \prec) with n vertices and $\chi_{\prec}(G)=p$ satisfies

$$
\overline{\mathrm{R}}((G, \prec)) \leq n^{O(k)^{\log p}} .
$$

Small ordered Ramsey numbers I

- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals $V(G)$ can be partitioned into so that no two adjacent vertices are in the same interval.

Theorem

For arbitrary k and p every k-degenerate ordered graph (G, \prec) with n vertices and $\chi_{\prec}(G)=p$ satisfies

$$
\overline{\mathrm{R}}((G, \prec)) \leq n^{O(k)^{\log p}} .
$$

- Conlon et al. showed $\overline{\mathrm{R}}(\mathcal{G}) \leq n^{O(k \log p)}$.

Small ordered Ramsey numbers II

Small ordered Ramsey numbers II

- The length of an edge $u v$ in $\mathcal{G}=(G, \prec)$ is $|i-j|$ if u is the ith vertex and v is the j th vertex of G in \prec.

Small ordered Ramsey numbers II

- The length of an edge $u v$ in $\mathcal{G}=(G, \prec)$ is $|i-j|$ if u is the ith vertex and v is the j th vertex of G in \prec.
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G}.

Small ordered Ramsey numbers II

- The length of an edge $u v$ in $\mathcal{G}=(G, \prec)$ is $|i-j|$ if u is the ith vertex and v is the j th vertex of G in \prec.
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G}.

Bandwidth is 1.

Small ordered Ramsey numbers II

- The length of an edge $u v$ in $\mathcal{G}=(G, \prec)$ is $|i-j|$ if u is the i th vertex and v is the j th vertex of G in \prec.
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G}.

Bandwidth is 1.

Bandwidth is $n-1$.

Small ordered Ramsey numbers II

- The length of an edge $u v$ in $\mathcal{G}=(G, \prec)$ is $|i-j|$ if u is the i th vertex and v is the j th vertex of G in \prec.
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G}.

Bandwidth is 1.

Bandwidth is $n-1$.

Theorem

For every $k \in \mathbb{N}$, there is a constant C_{k}^{\prime} such that every n-vertex ordered graph \mathcal{G} of bandwidth k satisfies $\overline{\mathrm{R}}(\mathcal{G}) \leq C_{k}^{\prime} \cdot n^{128 k}$.

Small ordered Ramsey numbers II

- The length of an edge $u v$ in $\mathcal{G}=(G, \prec)$ is $|i-j|$ if u is the i th vertex and v is the j th vertex of G in \prec.
- The bandwidth of \mathcal{G} is the length of the longest edge in \mathcal{G}.

Bandwidth is 1.

Bandwidth is $n-1$.

Theorem

For every $k \in \mathbb{N}$, there is a constant C_{k}^{\prime} such that every n-vertex ordered graph \mathcal{G} of bandwidth k satisfies $\overline{\mathrm{R}}(\mathcal{G}) \leq C_{k}^{\prime} \cdot n^{128 k}$.

- Solves a problem of Conlon et al.

Open problems

Open problems

- Specific classes of ordered graphs

Open problems

- Specific classes of ordered graphs
- Computing precise formulas for other classes of ordered graphs.
- Multicolored stars, monotone cycles, etc.

Open problems

- Specific classes of ordered graphs
- Computing precise formulas for other classes of ordered graphs.
- Multicolored stars, monotone cycles, etc.
- Growth rate of ordered Ramsey numbers

Open problems

- Specific classes of ordered graphs
- Computing precise formulas for other classes of ordered graphs.
- Multicolored stars, monotone cycles, etc.
- Growth rate of ordered Ramsey numbers
- Lower bounds for bounded-degree ordered graphs of constant interval chromatic number?
- Lower bounds for bounded-degree ordered graphs of constant bandwidth?
- What is the ordering of a path with minimum ordered Ramsey number?

Open problems

- Specific classes of ordered graphs
- Computing precise formulas for other classes of ordered graphs.
- Multicolored stars, monotone cycles, etc.
- Growth rate of ordered Ramsey numbers
- Lower bounds for bounded-degree ordered graphs of constant interval chromatic number?
- Lower bounds for bounded-degree ordered graphs of constant bandwidth?
- What is the ordering of a path with minimum ordered Ramsey number?

Thank you.

