Ramsey numbers and monotone colorings

Martin Balko

Charles University, Prague, Czech Republic

August 1, 2018

Monotone paths

Monotone paths

- The r-uniform monotone path \mathcal{P}_{n}^{r} is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

Monotone paths

- The r-uniform monotone path \mathcal{P}_{n}^{r} is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

Monotone paths

- The r-uniform monotone path \mathcal{P}_{n}^{r} is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

- What is the growth rate of $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$?

Monotone paths

- The r-uniform monotone path \mathcal{P}_{n}^{r} is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

- What is the growth rate of $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$?
- That is, what is the smallest $N \in \mathbb{N}$ such that every 2-coloring of the edges of $\mathcal{K}_{N}^{r}=\left([N],\binom{[N]}{r}\right)$ contains a monochromatic copy of \mathcal{P}_{n}^{r}.

Monotone paths

- The r-uniform monotone path \mathcal{P}_{n}^{r} is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

- What is the growth rate of $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$?
- That is, what is the smallest $N \in \mathbb{N}$ such that every 2-coloring of the edges of $\mathcal{K}_{N}^{r}=\left([N],\binom{[N]}{r}\right)$ contains a monochromatic copy of \mathcal{P}_{n}^{r}.
- This question was raised by Fox, Pach, Sudakov, and Suk (2012) who proved

$$
\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right) \leq \operatorname{tow}_{r-1}(O(n \log n))
$$

for $r \geq 3$, where $\operatorname{tow}_{1}(x)=x$ and $\operatorname{tow}_{h}(x)=2^{\operatorname{tow}_{h-1}(x)}$ for $h \geq 2$, and asked whether

$$
\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right) \leq \operatorname{tow}_{r-1}(O(n))
$$

Ordered Ramsey numbers: monotone paths

Ordered Ramsey numbers: monotone paths

- Nowadays, the numbers $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ are quite well understood.

Ordered Ramsey numbers: monotone paths

- Nowadays, the numbers $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)
For all positive integers n and $r \geq 3$,

$$
\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)=\operatorname{tow}_{r-1}((2-o(1)) n) .
$$

Ordered Ramsey numbers: monotone paths

- Nowadays, the numbers $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)
For all positive integers n and $r \geq 3$,

$$
\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)=\operatorname{tow}_{r-1}((2-o(1)) n) .
$$

- In fact, Moshkovitz and Shapira proved $\overline{\mathrm{R}}\left(\mathcal{P}_{n+r-1}^{r}\right)=\rho_{r}(n)+1$, where $\rho_{r}(n)$ is the number of line partitions of order r.

Ordered Ramsey numbers: monotone paths

- Nowadays, the numbers $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)
For all positive integers n and $r \geq 3$,

$$
\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)=\operatorname{tow}_{r-1}((2-o(1)) n) .
$$

- In fact, Moshkovitz and Shapira proved $\overline{\mathrm{R}}\left(\mathcal{P}_{n+r-1}^{r}\right)=\rho_{r}(n)+1$, where $\rho_{r}(n)$ is the number of line partitions of order r.

Ordered Ramsey numbers: monotone paths

- Nowadays, the numbers $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)
For all positive integers n and $r \geq 3$,

$$
\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)=\operatorname{tow}_{r-1}((2-o(1)) n) .
$$

- In fact, Moshkovitz and Shapira proved $\overline{\mathrm{R}}\left(\mathcal{P}_{n+r-1}^{r}\right)=\rho_{r}(n)+1$, where $\rho_{r}(n)$ is the number of line partitions of order r.

- In particular, $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$.

Motivation: the Erdős-Szekeres lemma

Motivation: the Erdős-Szekeres lemma

- Estimating $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)$ generalizes the following classical result.

Motivation: the Erdős-Szekeres lemma

- Estimating $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

For $n \in \mathbb{N}$, every sequence of $N=(n-1)^{2}+1$ distinct numbers contains a decreasing or an increasing subsequence of length n. Moreover, this is tight.

Motivation: the Erdős-Szekeres lemma

- Estimating $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

For $n \in \mathbb{N}$, every sequence of $N=(n-1)^{2}+1$ distinct numbers contains a decreasing or an increasing subsequence of length n. Moreover, this is tight.

- This is a corollary of the fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$.

Motivation: the Erdős-Szekeres lemma

- Estimating $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

For $n \in \mathbb{N}$, every sequence of $N=(n-1)^{2}+1$ distinct numbers contains a decreasing or an increasing subsequence of length n. Moreover, this is tight.

- This is a corollary of the fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$.
- For a sequence $S=\left(s_{1}, \ldots, s_{N}\right)$, color $\left\{s_{i}, s_{j}\right\}$ with $i<j$ red if $s_{i}<s_{j}$ and blue otherwise.

Motivation: the Erdős-Szekeres lemma

- Estimating $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

For $n \in \mathbb{N}$, every sequence of $N=(n-1)^{2}+1$ distinct numbers contains a decreasing or an increasing subsequence of length n. Moreover, this is tight.

- This is a corollary of the fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$.
- For a sequence $S=\left(s_{1}, \ldots, s_{N}\right)$, color $\left\{s_{i}, s_{j}\right\}$ with $i<j$ red if $s_{i}<s_{j}$ and blue otherwise.
- Then red monotone paths correspond to increasing and blue monotone paths to decreasing subsequences of S.

Motivation: the Erdős-Szekeres lemma

- Estimating $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

For $n \in \mathbb{N}$, every sequence of $N=(n-1)^{2}+1$ distinct numbers contains a decreasing or an increasing subsequence of length n. Moreover, this is tight.

- This is a corollary of the fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$.
- For a sequence $S=\left(s_{1}, \ldots, s_{N}\right)$, color $\left\{s_{i}, s_{j}\right\}$ with $i<j$ red if $s_{i}<s_{j}$ and blue otherwise.
- Then red monotone paths correspond to increasing and blue monotone paths to decreasing subsequences of S.
- Note: not every 2-coloring of $E\left(K_{N}\right)$ can be obtained this way.

Motivation: the Cap-Cup Theorem

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \geq 2$, every set of $\binom{2 n-4}{n-2}+1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \geq 2$, every set of $\binom{2 n-4}{n-2}+1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \geq 2$, every set of $\binom{2 n-4}{n-2}+1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

- The fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ yields new proof of the Cap-Cup Theorem.

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \geq 2$, every set of $\binom{2 n-4}{n-2}+1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

- The fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \geq 2$, every set of $\binom{2 n-4}{n-2}+1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

- The fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \geq 2$, every set of $\binom{2 n-4}{n-2}+1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

- The fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

Motivation: the Cap-Cup Theorem

- Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \geq 2$, every set of $\binom{2 n-4}{n-2}+1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

- The fact $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

- Then red monotone paths are cups and blue ones are caps.

Transitive colorings

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\frac{\left.v_{1}, \ldots, v_{r+1}\right\}}{r}\right)$ have the same color in c.

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\underset{r}{\left\{v_{1}, \ldots, v_{r+1}\right\}}\right)$ have the same color in c.

$$
r=2: \bigodot_{1} \bigodot_{2}
$$

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\underset{r}{\left\{v_{1}, \ldots, v_{r+1}\right\}}\right)$ have the same color in c.

$$
r=2: \bigodot_{2} 1213 \quad 23
$$

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\frac{\left.v_{1}, \ldots, v_{r+1}\right\}}{r}\right)$ have the same color in c.

$$
r=2: \bigodot_{2}
$$

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\underset{r}{\left\{v_{1}, \ldots, v_{r+1}\right\}}\right)$ have the same color in c.

$$
r=2: \underbrace{}_{2} 1213 \quad 23
$$

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\underset{r}{\left\{v_{1}, \ldots, v_{r+1}\right\}}\right)$ have the same color in c.

$$
r=2: \bigodot_{1}
$$

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\underset{r}{\left\{v_{1}, \ldots, v_{r+1}\right\}}\right)$ have the same color in c.

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\underset{r}{\left\{v_{1}, \ldots, v_{r+1}\right\}}\right)$ have the same color in c.

- The coloring by Moshkovitz and Shapira that shows $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)>\binom{2 n-4}{n-2}$ is transitive.

Transitive colorings

- Not all 2-colorings of $E\left(\mathcal{K}_{N}^{r}\right)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_{N}^{r}=\left(K_{N}^{r}, \prec\right)$ is transitive if, for every $(r+1)$-tuple $v_{1} \prec \cdots \prec v_{r+1}$ of vertices with $c\left(\left\{v_{1}, \ldots, v_{r}\right\}\right)=$ $c\left(\left\{v_{2}, \ldots, v_{r+1}\right\}\right)$, all r-tuples from $\left(\frac{\left.v_{1}, \ldots, v_{r+1}\right\}}{r}\right)$ have the same color in c.

- The coloring by Moshkovitz and Shapira that shows $\overline{\mathrm{R}}\left(\mathcal{P}_{n}^{3}\right)>\binom{2 n-4}{n-2}$ is transitive.
- However, such colorings for higher uniformities are not!

Transitive Ramsey numbers

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.
- We have

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.
- We have
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$ (the Erdős-Szekeres lemma),

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.
- We have
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$ (the Erdős-Szekeres lemma),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ (the Cap-Cup Theorem),

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2 -coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.
- We have
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$ (the Erdős-Szekeres lemma),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ (the Cap-Cup Theorem),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{4}\right)=2^{2^{\ominus(n)}}$ (Elíás, Matoušek), and

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.
- We have
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$ (the Erdős-Szekeres lemma),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ (the Cap-Cup Theorem),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{4}\right)=2^{2^{\ominus(n)}}$ (Eliáš, Matoušek), and
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq$ tow $_{r-1}((2-o(1)) n)$ for $r \geq 3$ (Moshkovitz, Shapira).

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.
- We have
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$ (the Erdős-Szekeres lemma),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ (the Cap-Cup Theorem),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{4}\right)=2^{2^{\ominus(n)}}$ (Eliáš, Matoušek), and
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq$ tow $_{r-1}((2-o(1)) n)$ for $r \geq 3$ (Moshkovitz, Shapira).

Problem 1 (Eliáš, Matoušek and Moshkovitz, Shapira)

What is the growth rate of $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ for $r>4$?

Transitive Ramsey numbers

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$.
- We have
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{2}\right)=(n-1)^{2}+1$ (the Erdős-Szekeres lemma),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{3}\right)=\binom{2 n-4}{n-2}+1$ (the Cap-Cup Theorem),
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{4}\right)=2^{2^{\ominus(n)}}$ (Eliáš, Matoušek), and
- $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq$ tow $_{r-1}((2-o(1)) n)$ for $r \geq 3$ (Moshkovitz, Shapira).

Problem 1 (Eliáš, Matoušek and Moshkovitz, Shapira)

What is the growth rate of $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ for $r>4$?

- We settle this problem even for more restrictive colorings.

Monotone colorings

Monotone colorings

- A coloring of edges of \mathcal{K}_{N}^{r} with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every $(r+1)$-tuple of vertices.

Monotone colorings

- A coloring of edges of \mathcal{K}_{N}^{r} with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every $(r+1)$-tuple of vertices.

$r=3$			
\circ	$:$		
123	○	O	0
124	134	234	

Monotone colorings

- A coloring of edges of \mathcal{K}_{N}^{r} with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every $(r+1)$-tuple of vertices.

- Every r-monotone coloring is transitive, but not the other way around for $r \geq 3$.

Monotone colorings

- A coloring of edges of \mathcal{K}_{N}^{r} with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every $(r+1)$-tuple of vertices.

- Every r-monotone coloring is transitive, but not the other way around for $r \geq 3$.
- Known under many different names, admit geometric interpretations.

Monotone Ramsey numbers

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ with equalities for $r=2,3$.

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ with equalities for $r=2,3$.
- All known bounds for $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ hold for $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ with equalities for $r=2,3$.
- All known bounds for $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ hold for $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.
- We derive asymptotically tight lower bound on $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ with equalities for $r=2,3$.
- All known bounds for $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ hold for $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.
- We derive asymptotically tight lower bound on $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.

Theorem 6 (B., 2017+)

For n and $r \geq 3$, we have

$$
\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{2 n+r-1}^{r}\right) \geq \operatorname{tow}_{r-1}((1-o(1)) n) .
$$

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ with equalities for $r=2,3$.
- All known bounds for $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ hold for $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.
- We derive asymptotically tight lower bound on $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.

Theorem 6 (B., 2017+)

For n and $r \geq 3$, we have

$$
\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{2 n+r-1}^{r}\right) \geq \operatorname{tow}_{r-1}((1-o(1)) n) .
$$

- In particular, this solves Problem 1.

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ with equalities for $r=2,3$.
- All known bounds for $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ hold for $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.
- We derive asymptotically tight lower bound on $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.

Theorem 6 (B., 2017+)

For n and $r \geq 3$, we have

$$
\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{2 n+r-1}^{r}\right) \geq \operatorname{tow}_{r-1}((1-o(1)) n) .
$$

- In particular, this solves Problem 1.
- Asymptotically tight, but the exponent can probably be improved.

Monotone Ramsey numbers

- For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_{N}^{r} contains monochromatic \mathcal{P}_{n}^{r}.
- Clearly, $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right) \leq \overline{\mathrm{R}}\left(\mathcal{P}_{n}^{r}\right)$ with equalities for $r=2,3$.
- All known bounds for $\overline{\mathrm{R}}_{\text {trans }}\left(\mathcal{P}_{n}^{r}\right)$ hold for $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.
- We derive asymptotically tight lower bound on $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{r}\right)$.

Theorem 6 (B., 2017+)

For n and $r \geq 3$, we have

$$
\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{2 n+r-1}^{r}\right) \geq \operatorname{tow}_{r-1}((1-o(1)) n) .
$$

- In particular, this solves Problem 1.
- Asymptotically tight, but the exponent can probably be improved.
- Since r-monotone colorings admit geometric interpretations, we obtain estimates for geometric Ramsey-type statements.

Sketch of the construction

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

Sketch of the construction

- Construction of $c_{r}=c_{3}$ on $N=2^{n}=8$ verties avoiding $\mathcal{P}^{r}{ }_{2 n+r-1}=\mathcal{P}_{8}^{3}$.
- Vertices of $\mathcal{K}_{N}^{3}=$ "diagonals" of a $2 n \times 2 n$ lattice with paired elements of two types, exactly one element from each pair.

- For $r=4$, these eight vertices form the "new diagonal".

Geometric interpretations: k-pseudoconfigurations

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

1. for every $I \in L$, there are at least $k+1$ points of P lying on I,

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

1. for every $I \in L$, there are at least $k+1$ points of P lying on I,
2. for every $(k+1)$-tuple of distinct points of P, there is a unique curve I from L passing through each point of this $(k+1)$-tuple,

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

1. for every $I \in L$, there are at least $k+1$ points of P lying on I,
2. for every $(k+1)$-tuple of distinct points of P, there is a unique curve I from L passing through each point of this $(k+1)$-tuple,
3. any two distinct curves from L cross k times.

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

1. for every $I \in L$, there are at least $k+1$ points of P lying on I,
2. for every $(k+1)$-tuple of distinct points of P, there is a unique curve I from L passing through each point of this $(k+1)$-tuple,
3. any two distinct curves from L cross k times.

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

1. for every $I \in L$, there are at least $k+1$ points of P lying on I,
2. for every $(k+1)$-tuple of distinct points of P, there is a unique curve I from L passing through each point of this $(k+1)$-tuple,
3. any two distinct curves from L cross k times.

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

1. for every $I \in L$, there are at least $k+1$ points of P lying on I,
2. for every $(k+1)$-tuple of distinct points of P, there is a unique curve I from L passing through each point of this $(k+1)$-tuple,
3. any two distinct curves from L cross k times.

Geometric interpretations: k-pseudoconfigurations

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

1. for every $I \in L$, there are at least $k+1$ points of P lying on I,
2. for every $(k+1)$-tuple of distinct points of P, there is a unique curve $/$ from L passing through each point of this $(k+1)$-tuple,
3. any two distinct curves from L cross k times.

Theorem 7 (Miyata, 2017)

For $k, n \in \mathbb{N}$, there is a bijection between sign functions of simple k-pseudoconfigurations of n points and $(k+2)$-monotone colorings of \mathcal{K}_{n}^{k+2}.

Geometric interpretations: higher-order Erdős-Szekeres theorems

Geometric interpretations: higher-order Erdős-Szekeres theorems

- A subset S of P is $(k+1)$ st order monotone if the sign function of (P, L) attains only - or only + value on all of $(k+2)$-tuples of S.

Geometric interpretations: higher-order Erdős-Szekeres theorems

- A subset S of P is $(k+1)$ st order monotone if the sign function of (P, L) attains only - or only + value on all of $(k+2)$-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a $(k+1)$ st order monotone subset of size n equals $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{k+2}\right)$.

- A subset S of P is $(k+1)$ st order monotone if the sign function of (P, L) attains only - or only + value on all of $(k+2)$-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a $(k+1)$ st order monotone subset of size n equals $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{k+2}\right)$.

- The setting in which L contains polynomials of degree at most k corresponds to higher-order Erdős-Szekeres theorems by Eliáš and Matoušek.
- A subset S of P is $(k+1)$ st order monotone if the sign function of (P, L) attains only - or only + value on all of $(k+2)$-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a $(k+1)$ st order monotone subset of size n equals $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{k+2}\right)$.

- The setting in which L contains polynomials of degree at most k corresponds to higher-order Erdős-Szekeres theorems by Eliáš and Matoušek.
- Can the curves from Theorem 7 be "stretched" to polynomials of degree at most k ?
- A subset S of P is $(k+1)$ st order monotone if the sign function of (P, L) attains only - or only + value on all of $(k+2)$-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a $(k+1)$ st order monotone subset of size n equals $\overline{\mathrm{R}}_{\text {mon }}\left(\mathcal{P}_{n}^{k+2}\right)$.

- The setting in which L contains polynomials of degree at most k corresponds to higher-order Erdős-Szekeres theorems by Eliáš and Matoušek.
- Can the curves from Theorem 7 be "stretched" to polynomials of degree at most k ?
- True for $r \leq 4$.

Counting r-monotone colorings

Counting r-monotone colorings

- Some aspects of r-monotone colorings remain unexplored.

Counting r-monotone colorings

- Some aspects of r-monotone colorings remain unexplored.
- How many r-monotone colorings of \mathcal{K}_{n}^{r} are there?

Counting r-monotone colorings

- Some aspects of r-monotone colorings remain unexplored.
- How many r-monotone colorings of \mathcal{K}_{n}^{r} are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_{r}(n)$ of r-monotone colorings of \mathcal{K}_{n}^{r} satisfies

$$
2^{n^{r-1} / r^{4 r}} \leq S_{r}(n) \leq 2^{2^{r-2} n^{r-1} /(r-1)!} .
$$

Counting r-monotone colorings

- Some aspects of r-monotone colorings remain unexplored.
- How many r-monotone colorings of \mathcal{K}_{n}^{r} are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_{r}(n)$ of r-monotone colorings of \mathcal{K}_{n}^{r} satisfies

$$
2^{n^{r-1} / r^{4 r}} \leq S_{r}(n) \leq 2^{2^{r-2} n^{r-1} /(r-1)!}
$$

- Generalizes the well-known fact that the number of simple arrangements of n pseudolines is $2^{\Theta\left(n^{2}\right)}$ (case $r=3$).

Counting r-monotone colorings

- Some aspects of r-monotone colorings remain unexplored.
- How many r-monotone colorings of \mathcal{K}_{n}^{r} are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_{r}(n)$ of r-monotone colorings of \mathcal{K}_{n}^{r} satisfies

$$
2^{n^{r-1} / r^{4 r}} \leq S_{r}(n) \leq 2^{2^{r-2} n^{r-1} /(r-1)!}
$$

- Generalizes the well-known fact that the number of simple arrangements of n pseudolines is $2^{\Theta\left(n^{2}\right)}$ (case $r=3$).
- Extends previous estimates by Knuth and Felsner and Valtr.

Counting r-monotone colorings

- Some aspects of r-monotone colorings remain unexplored.
- How many r-monotone colorings of \mathcal{K}_{n}^{r} are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_{r}(n)$ of r-monotone colorings of \mathcal{K}_{n}^{r} satisfies

$$
2^{n^{r-1} / r^{4 r}} \leq S_{r}(n) \leq 2^{2^{r-2} n^{r-1} /(r-1)!}
$$

- Generalizes the well-known fact that the number of simple arrangements of n pseudolines is $2^{\Theta\left(n^{2}\right)}$ (case $r=3$).
- Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.

