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e The r-uniform monotone path P/ is an r-uniform hypergraph with n
vertices and edges formed by r-tuples of consecutive vertices.

REYYYXY YR A CCOOOD D

o What is the growth rate of R(P")?
e That is, what is the smallest N € N such that every 2-coloring of the
edges of K}, = ([N]7 ([’y])> contains a monochromatic copy of P;.

e This question was raised by Fox, Pach, Sudakov, and Suk (2012) who
proved B
R(PY) < tow,_+(O(nlog )

for r > 3, where tow;(x) = x and tow,(x) = 2t"“-1() for h > 2, and
asked whether

R(P;) < tow,_1(0O(n)).
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Ordered Ramsey numbers: monotone paths

o Nowadays, the numbers R(P”) are quite well understood.
Theorem 5 (Moshkovitz, Shapira, 2015)

For all positive integers n and r > 3,

R(P;) = tow,_1((2 — o(1))n).

n

o In fact, Moshkovitz and Shapira proved R(P.,,_ ;) = p,(n) + 1, where
pr(n) is the number of line partitions of order r.

n-—2

=N W et

1 2 3 45 -~ n-=-2

o In particular, R(P3) = (*'3)}) + L.
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Motivation: the Erdos—Szekeres lemma

o Estimating R(P?2) generalizes the following classical result.

The Erdds—Szekeres lemma (Erdds, Szekeres, 1935)

For n € N, every sequence of N = (n— 1)? + 1 distinct numbers contains a
decreasing or an increasing subsequence of length n. Moreover, this is tight.

e This is a corollary of the fact R(P2) = (n—1)> + 1.

e For a sequence S = (s1,...,sy), color {s;,s;} with i < j red if 5; < s;
and blue otherwise.

@ Then red monotone paths correspond to increasing and blue monotone
paths to decreasing subsequences of S.

e Note: not every 2-coloring of E(Ky) can be obtained this way.
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Motivation: the Cap-Cup Theorem

e Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdés, Szekeres, 1935)

For n > 2, every set of (zn":;) + 1 points in the plane, with no three being

collinear, contains an n-cup or an n-cap. Moreover, this is tight.

°
®
g ° 5-cup p
5-cap P °
o ° °
o The fact R(P?) = (")) + 1 yields new proof of the Cap-Cup Theorem.
e It suffices to color triples of points according to their orientation.

e

@ Then red monotone paths are cups and blue ones are caps.
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e A 2-coloring c of the edges of K}, = (KJ,, <) is transitive if, for every
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e Not all 2-colorings of E(K},) can be obtained this way, the resulting
2-coloring is always transitive.

e A 2-coloring c of the edges of K}, = (KJ,, <) is transitive if, for every
(r +1)-tuple vy < --- < v,4q of vertices with c({vy,...,v.}) =
c({va,...,v,q1}), all r-tuples from ({Vl""r’v”“}) have the same color in c.

d e & o 121323 12 13 23
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r:3 . — J— [

(0] (@] (o] (@]
123 124 134 234

e The coloring by Moshkovitz and Shapira that shows R(P2) > (>"1) is
transitive.
e However, such colorings for higher uniformities are not!
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Transitive Ramsey numbers

e For r > 2 and n, let the transitive Ramsey number R,,..s(P") be the
minimum N such that every transitive 2-coloring of the edges of K},
contains monochromatic P;.

o Clearly, Ryans(P7) < R(PY).
o We have

= (n—1)?> 4+ 1 (the Erd8s—Szekeres lemma),
(3 4) + 1 (the Cap-Cup Theorem),
2
to

2°0) (Elig¥, Matougek), and
ow,_1((2 — o(1))n) for r > 3 (Moshkovitz, Shapira).

Problem 1 (Elid%, Matousek and Moshkovitz, Shapira)
What is the growth rate of Ry..s(Pr) for r > 47

e We settle this problem even for more restrictive colorings.
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Monotone colorings

e A coloring of edges of K}, with — and + is r-monotone if there is at
most one change of a sign in the lexicographically ordered sequence of
r-tuples of vertices from every (r + 1)-tuple of vertices.

r=3 : —
O o o o S _
123 124 134 234

e Every r-monotone coloring is transitive, but not the other way around

for r > 3.

e Known under many different names, admit geometric interpretations.
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Monotone Ramsey numbers

e For r > 2 and n, let the monotone Ramsey number R,,,,(P") be the
minimum /N such that every r-monotone coloring of the edges of K},
contains monochromatic P;.

o Clearly, Rion(P5) < Rirans(Pr) < R(P!) with equalities for r = 2, 3.
o All known bounds for R;..s(P5) hold for Ren(P).

o We derive asymptotically tight lower bound on R 0,(P").
Theorem 6 (B., 2017+)

For n and r > 3, we have

Rimon(P3p4,-1) 2 tow,1((1 — o(1))n).

@ In particular, this solves Problem 1.
e Asymptotically tight, but the exponent can probably be improved.

@ Since r-monotone colorings admit geometric interpretations, we obtain
estimates for geometric Ramsey-type statements.
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Sketch of the construction

o Construction of ¢, = c3 on N = 2" = 8 verties avoiding P o4, 1 = P;.

o Vertices of K3, = “diagonals”’ of a 2n x 2n lattice with paired elements
of two types, exactly one element from each pair.
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e For r = 4, these eight vertices form the “new diagonal”.
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Geometric interpretations: k-pseudoconfigurations

@ A simple k-pseudoconfiguration is a set P of n points in the plane
ordered by their increasing x-coordinates together with a collection L of
x-monotone Jordan arcs such that:

1. for every | € L, there are at least k 4+ 1 points of P lying on /,
2. for every (k + 1)-tuple of distinct points of P, there is a unique

curve | from L passing through each point of this (k + 1)-tuple,
3. any two distinct curves from L cross k times.

Theorem 7 (Miyata, 2017)

For k,n € N, there is a bijection between sign functions of simple
k-pseudoconfigurations of n points and (k + 2)-monotone colorings of k2.
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Geometric interpretations: higher-order Erd6s—Szekeres theorems

e A subset S of P is (k + 1)st order monotone if the sign function of
(P, L) attains only — or only + value on all of (k + 2)-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points
contains a (k + 1)st order monotone subset of size n equals Ro,(P5+2).

@ The setting in which L contains polynomials of degree at most k
corresponds to higher-order Erd6s—Szekeres theorems by Elias and
Matousek.

e Can the curves from Theorem 7 be “stretched” to polynomials of degree
at most k?

e True for r < 4.
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Counting r-monotone colorings

e Some aspects of r-monotone colorings remain unexplored.
e How many r-monotone colorings of K] are there?

Theorem 9 (B., 2017+)

For r >3 and n > r, the number S,(n) of r-monotone colorings of K]
satisfies

2nr—1/r4r S Sr(n) S 22r—2nr—1/(r_1)!'

e Generalizes the well-known fact that the number of simple arrangements
. . 2
of n pseudolines is 2°(") (case r = 3).

e Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.



