Ramsey numbers and monotone colorings

Martin Balko

Charles University, Prague, Czech Republic

August 1, 2018

• The *r*-uniform monotone path \mathcal{P}_n^r is an *r*-uniform hypergraph with *n* vertices and edges formed by *r*-tuples of consecutive vertices.

• The r-uniform monotone path \mathcal{P}_n^r is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

• The r-uniform monotone path \mathcal{P}_n^r is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

• What is the growth rate of $\overline{R}(\mathcal{P}_n^r)$?

• The r-uniform monotone path \mathcal{P}_n^r is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

- What is the growth rate of $\overline{R}(\mathcal{P}_n^r)$?
- That is, what is the smallest $N \in \mathbb{N}$ such that every 2-coloring of the edges of $\mathcal{K}_N^r = \left([N], \binom{[N]}{r} \right)$ contains a monochromatic copy of \mathcal{P}_n^r .

• The r-uniform monotone path \mathcal{P}_n^r is an r-uniform hypergraph with n vertices and edges formed by r-tuples of consecutive vertices.

$$\mathcal{P}_7^2$$

- What is the growth rate of $\overline{\mathbb{R}}(\mathcal{P}_n^r)$?
- That is, what is the smallest $N \in \mathbb{N}$ such that every 2-coloring of the edges of $\mathcal{K}_N^r = \left([N], \binom{[N]}{r}\right)$ contains a monochromatic copy of \mathcal{P}_n^r .
- This question was raised by Fox, Pach, Sudakov, and Suk (2012) who proved

$$\overline{\mathsf{R}}(\mathcal{P}_n^r) \leq \mathsf{tow}_{r-1}(\mathit{O}(n\log n))$$

for $r \ge 3$, where $\mathsf{tow}_1(x) = x$ and $\mathsf{tow}_h(x) = 2^{\mathsf{tow}_{h-1}(x)}$ for $h \ge 2$, and asked whether

$$\overline{R}(\mathcal{P}_n^r) \leq \operatorname{tow}_{r-1}(O(n)).$$

• Nowadays, the numbers $\overline{R}(\mathcal{P}_n^r)$ are quite well understood.

• Nowadays, the numbers $\overline{\mathbb{R}}(\mathcal{P}_n^r)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)

For all positive integers n and $r \ge 3$,

$$\overline{\mathsf{R}}(\mathcal{P}_n^r) = \mathsf{tow}_{r-1}((2-o(1))n).$$

• Nowadays, the numbers $\overline{\mathbb{R}}(\mathcal{P}_n^r)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)

For all positive integers n and $r \ge 3$,

$$\overline{\mathsf{R}}(\mathcal{P}_n^r) = \mathsf{tow}_{r-1}((2-o(1))n).$$

• In fact, Moshkovitz and Shapira proved $\overline{\mathbb{R}}(\mathcal{P}_{n+r-1}^r) = \rho_r(n) + 1$, where $\rho_r(n)$ is the number of line partitions of order r.

• Nowadays, the numbers $\overline{\mathbb{R}}(\mathcal{P}_n^r)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)

For all positive integers n and $r \ge 3$,

$$\overline{\mathsf{R}}(\mathcal{P}_n^r) = \mathsf{tow}_{r-1}((2-o(1))n).$$

• In fact, Moshkovitz and Shapira proved $\overline{\mathbb{R}}(\mathcal{P}_{n+r-1}^r) = \rho_r(n) + 1$, where $\rho_r(n)$ is the number of line partitions of order r.

• Nowadays, the numbers $\overline{\mathbb{R}}(\mathcal{P}_n^r)$ are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)

For all positive integers n and $r \geq 3$,

$$\overline{\mathsf{R}}(\mathcal{P}_n^r) = \mathsf{tow}_{r-1}((2-o(1))n).$$

• In fact, Moshkovitz and Shapira proved $\overline{\mathbb{R}}(\mathcal{P}_{n+r-1}^r) = \rho_r(n) + 1$, where $\rho_r(n)$ is the number of line partitions of order r.

• In particular, $\overline{\mathbb{R}}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$.

• Estimating $\overline{\mathbb{R}}(\mathcal{P}_n^2)$ generalizes the following classical result.

• Estimating $\overline{\mathbb{R}}(\mathcal{P}_n^2)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

• Estimating $\overline{\mathbb{R}}(\mathcal{P}_n^2)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

For $n \in \mathbb{N}$, every sequence of $N = (n-1)^2 + 1$ distinct numbers contains a decreasing or an increasing subsequence of length n. Moreover, this is tight.

• This is a corollary of the fact $\overline{\mathbb{R}}(\mathcal{P}_n^2) = (n-1)^2 + 1$.

• Estimating $\overline{\mathbb{R}}(\mathcal{P}_n^2)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

- This is a corollary of the fact $\overline{\mathbb{R}}(\mathcal{P}_n^2) = (n-1)^2 + 1$.
- For a sequence $S = (s_1, ..., s_N)$, color $\{s_i, s_j\}$ with i < j red if $s_i < s_j$ and blue otherwise.

• Estimating $\overline{R}(\mathcal{P}_n^2)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

- This is a corollary of the fact $\overline{\mathbb{R}}(\mathcal{P}_n^2) = (n-1)^2 + 1$.
- For a sequence $S = (s_1, ..., s_N)$, color $\{s_i, s_j\}$ with i < j red if $s_i < s_j$ and blue otherwise.
- Then red monotone paths correspond to increasing and blue monotone paths to decreasing subsequences of S.

• Estimating $\overline{R}(\mathcal{P}_n^2)$ generalizes the following classical result.

The Erdős-Szekeres lemma (Erdős, Szekeres, 1935)

- This is a corollary of the fact $\overline{\mathbb{R}}(\mathcal{P}_n^2) = (n-1)^2 + 1$.
- For a sequence $S = (s_1, ..., s_N)$, color $\{s_i, s_j\}$ with i < j red if $s_i < s_j$ and blue otherwise.
- Then red monotone paths correspond to increasing and blue monotone paths to decreasing subsequences of *S*.
- Note: not every 2-coloring of $E(K_N)$ can be obtained this way.

• Motivation comes also from discrete geometry.

• Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

• Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

• Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \ge 2$, every set of $\binom{2n-4}{n-2} + 1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

• The fact $\overline{\mathbb{R}}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ yields new proof of the Cap-Cup Theorem.

• Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

- The fact $\overline{\mathbb{R}}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

• Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

- The fact $\overline{\mathbb{R}}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

• Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

- The fact $\overline{\mathbb{R}}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

• Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For $n \ge 2$, every set of $\binom{2n-4}{n-2} + 1$ points in the plane, with no three being collinear, contains an n-cup or an n-cap. Moreover, this is tight.

- The fact $\overline{\mathbb{R}}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ yields new proof of the Cap-Cup Theorem.
- It suffices to color triples of points according to their orientation.

Then red monotone paths are cups and blue ones are caps.

• Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

$$r = 2$$
: $\begin{array}{c} + \\ 1 \\ 2 \\ 3 \end{array}$ $\begin{array}{c} + \\ 12 \\ 13 \\ 23 \end{array}$

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $\binom{\{v_1, \ldots, v_{r+1}\}}{r}$ have the same color in c.

• The coloring by Moshkovitz and Shapira that shows $\overline{R}(\mathcal{P}_n^3) > {2n-4 \choose n-2}$ is transitive.

- Not all 2-colorings of $E(\mathcal{K}_N^r)$ can be obtained this way, the resulting 2-coloring is always transitive.
- A 2-coloring c of the edges of $\mathcal{K}_N^r = (\mathcal{K}_N^r, \prec)$ is transitive if, for every (r+1)-tuple $v_1 \prec \cdots \prec v_{r+1}$ of vertices with $c(\{v_1, \ldots, v_r\}) = c(\{v_2, \ldots, v_{r+1}\})$, all r-tuples from $(\{v_1, \ldots, v_{r+1}\})$ have the same color in c.

$$r = 2$$
: $\begin{array}{c} + & + & + & \\ 1 & 2 & 3 \\ \end{array}$ $\begin{array}{c} 12 & 13 & 23 \\ \end{array}$ $\begin{array}{c} - & - & - \\ 12 & 13 & 23 \\ \end{array}$

- The coloring by Moshkovitz and Shapira that shows $\overline{R}(\mathcal{P}_n^3) > \binom{2n-4}{n-2}$ is transitive.
- However, such colorings for higher uniformities are not!

• For $r \geq 2$ and n, let the transitive Ramsey number $\overline{R}_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{R}_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{R}_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.
- We have

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{R}_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.
- We have
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^2) = (n-1)^2 + 1$ (the Erdős–Szekeres lemma),

- For $r \geq 2$ and n, let the transitive Ramsey number $R_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.
- We have
 - $\overline{\mathbb{R}}_{trans}(\mathcal{P}_n^2) = (n-1)^2 + 1$ (the Erdős–Szekeres lemma),
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ (the Cap-Cup Theorem),

- For $r \geq 2$ and n, let the transitive Ramsey number $R_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.
- We have
 - $\overline{\mathbb{R}}_{trans}(\mathcal{P}_n^2) = (n-1)^2 + 1$ (the Erdős–Szekeres lemma),
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ (the Cap-Cup Theorem),
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^4) = 2^{2^{\Theta(n)}}$ (Eliáš, Matoušek), and

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{\mathbb{R}}_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.
- We have
 - $\overline{\mathbb{R}}_{trans}(\mathcal{P}_n^2) = (n-1)^2 + 1$ (the Erdős–Szekeres lemma),
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ (the Cap-Cup Theorem),
 - $\overline{R}_{trans}(\mathcal{P}_n^4) = 2^{2^{\Theta(n)}}$ (Eliáš, Matoušek), and
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^r) \leq \mathsf{tow}_{r-1}((2-o(1))n)$ for $r \geq 3$ (Moshkovitz, Shapira).

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{R}_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.
- We have
 - $\overline{\mathbb{R}}_{trans}(\mathcal{P}_n^2) = (n-1)^2 + 1$ (the Erdős–Szekeres lemma),
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ (the Cap-Cup Theorem),
 - $\overline{R}_{trans}(\mathcal{P}_n^4) = 2^{2^{\Theta(n)}}$ (Eliáš, Matoušek), and
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^r) \leq \mathsf{tow}_{r-1}((2-o(1))n)$ for $r \geq 3$ (Moshkovitz, Shapira).

Problem 1 (Eliáš, Matoušek and Moshkovitz, Shapira)

What is the growth rate of $\overline{R}_{trans}(\mathcal{P}_n^r)$ for r > 4?

- For $r \geq 2$ and n, let the transitive Ramsey number $\overline{R}_{trans}(\mathcal{P}_n^r)$ be the minimum N such that every transitive 2-coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$.
- We have
 - $\overline{\mathbb{R}}_{trans}(\mathcal{P}_n^2) = (n-1)^2 + 1$ (the Erdős–Szekeres lemma),
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^3) = \binom{2n-4}{n-2} + 1$ (the Cap-Cup Theorem),
 - $\overline{R}_{trans}(\mathcal{P}_n^4) = 2^{2^{\Theta(n)}}$ (Eliáš, Matoušek), and
 - $\overline{\mathsf{R}}_{trans}(\mathcal{P}_n^r) \leq \mathsf{tow}_{r-1}((2-o(1))n)$ for $r \geq 3$ (Moshkovitz, Shapira).

Problem 1 (Eliáš, Matoušek and Moshkovitz, Shapira)

What is the growth rate of $\overline{R}_{trans}(\mathcal{P}_n^r)$ for r > 4?

We settle this problem even for more restrictive colorings.

• A coloring of edges of \mathcal{K}_N^r with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every (r+1)-tuple of vertices.

• A coloring of edges of \mathcal{K}_N^r with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every (r+1)-tuple of vertices.

• A coloring of edges of \mathcal{K}_N^r with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every (r+1)-tuple of vertices.

• Every *r*-monotone coloring is transitive, but not the other way around for $r \ge 3$.

• A coloring of edges of \mathcal{K}_N^r with - and + is r-monotone if there is at most one change of a sign in the lexicographically ordered sequence of r-tuples of vertices from every (r+1)-tuple of vertices.

- Every r-monotone coloring is transitive, but not the other way around for r > 3.
- Known under many different names, admit geometric interpretations.

• For $r \geq 2$ and n, let the monotone Ramsey number $\overline{\mathbb{R}}_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .

- For $r \geq 2$ and n, let the monotone Ramsey number $R_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{mon}(\mathcal{P}_n^r) \leq \overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$ with equalities for r = 2, 3.

- For $r \geq 2$ and n, let the monotone Ramsey number $R_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{mon}(\mathcal{P}_n^r) \leq \overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$ with equalities for r = 2, 3.
- All known bounds for $\overline{R}_{trans}(\mathcal{P}_n^r)$ hold for $\overline{R}_{mon}(\mathcal{P}_n^r)$.

- For $r \geq 2$ and n, let the monotone Ramsey number $R_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{mon}(\mathcal{P}_n^r) \leq \overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$ with equalities for r=2,3.
- All known bounds for $\overline{R}_{trans}(\mathcal{P}_n^r)$ hold for $\overline{R}_{mon}(\mathcal{P}_n^r)$.
- We derive asymptotically tight lower bound on $\overline{R}_{mon}(\mathcal{P}_n^r)$.

- For $r \geq 2$ and n, let the monotone Ramsey number $R_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{mon}(\mathcal{P}_n^r) \leq \overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$ with equalities for r = 2, 3.
- All known bounds for $\overline{R}_{trans}(\mathcal{P}_n^r)$ hold for $\overline{R}_{mon}(\mathcal{P}_n^r)$.
- We derive asymptotically tight lower bound on $\overline{R}_{mon}(\mathcal{P}_n^r)$.

Theorem 6 (B., 2017+)

For n and $r \geq 3$, we have

$$\overline{\mathsf{R}}_{mon}(\mathcal{P}^r_{2n+r-1}) \geq \mathsf{tow}_{r-1}((1-o(1))n).$$

- For $r \geq 2$ and n, let the monotone Ramsey number $R_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{mon}(\mathcal{P}_n^r) \leq \overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$ with equalities for r = 2, 3.
- All known bounds for $\overline{R}_{trans}(\mathcal{P}_n^r)$ hold for $\overline{R}_{mon}(\mathcal{P}_n^r)$.
- We derive asymptotically tight lower bound on $\overline{R}_{mon}(\mathcal{P}_n^r)$.

Theorem 6 (B., 2017+)

For n and $r \ge 3$, we have

$$\overline{\mathsf{R}}_{mon}(\mathcal{P}^r_{2n+r-1}) \geq \mathsf{tow}_{r-1}((1-o(1))n).$$

• In particular, this solves Problem 1.

- For $r \geq 2$ and n, let the monotone Ramsey number $R_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{mon}(\mathcal{P}_n^r) \leq \overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$ with equalities for r = 2, 3.
- All known bounds for $\overline{R}_{trans}(\mathcal{P}_n^r)$ hold for $\overline{R}_{mon}(\mathcal{P}_n^r)$.
- We derive asymptotically tight lower bound on $\overline{R}_{mon}(\mathcal{P}_n^r)$.

Theorem 6 (B., 2017+)

For n and $r \ge 3$, we have

$$\overline{\mathsf{R}}_{mon}(\mathcal{P}^r_{2n+r-1}) \geq \mathsf{tow}_{r-1}((1-o(1))n).$$

- In particular, this solves Problem 1.
- Asymptotically tight, but the exponent can probably be improved.

- For $r \geq 2$ and n, let the monotone Ramsey number $R_{mon}(\mathcal{P}_n^r)$ be the minimum N such that every r-monotone coloring of the edges of \mathcal{K}_N^r contains monochromatic \mathcal{P}_n^r .
- Clearly, $\overline{R}_{mon}(\mathcal{P}_n^r) \leq \overline{R}_{trans}(\mathcal{P}_n^r) \leq \overline{R}(\mathcal{P}_n^r)$ with equalities for r = 2, 3.
- All known bounds for $\overline{R}_{trans}(\mathcal{P}_n^r)$ hold for $\overline{R}_{mon}(\mathcal{P}_n^r)$.
- We derive asymptotically tight lower bound on $\overline{R}_{mon}(\mathcal{P}_n^r)$.

Theorem 6 (B., 2017+)

For n and $r \ge 3$, we have

$$\overline{\mathsf{R}}_{mon}(\mathcal{P}^r_{2n+r-1}) \geq \mathsf{tow}_{r-1}((1-o(1))n).$$

- In particular, this solves Problem 1.
- Asymptotically tight, but the exponent can probably be improved.
- Since *r*-monotone colorings admit geometric interpretations, we obtain estimates for geometric Ramsey-type statements.

• Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

- Construction of $c_r = c_3$ on $N = 2^n = 8$ verties avoiding $\mathcal{P}^r_{2n+r-1} = \mathcal{P}^3_8$.
- Vertices of \mathcal{K}_N^3 = "diagonals" of a $2n \times 2n$ lattice with paired elements of two types, exactly one element from each pair.

• For r = 4, these eight vertices form the "new diagonal".

 A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:
 - 1. for every $l \in L$, there are at least k+1 points of P lying on l,

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:
 - 1. for every $l \in L$, there are at least k+1 points of P lying on l,
 - 2. for every (k + 1)-tuple of distinct points of P, there is a unique curve I from L passing through each point of this (k + 1)-tuple,

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:
 - 1. for every $l \in L$, there are at least k+1 points of P lying on l,
 - 2. for every (k + 1)-tuple of distinct points of P, there is a unique curve I from L passing through each point of this (k + 1)-tuple,
 - 3. any two distinct curves from L cross k times.

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:
 - 1. for every $l \in L$, there are at least k+1 points of P lying on l,
 - 2. for every (k + 1)-tuple of distinct points of P, there is a unique curve I from L passing through each point of this (k + 1)-tuple,
 - 3. any two distinct curves from L cross k times.

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:
 - 1. for every $l \in L$, there are at least k+1 points of P lying on l,
 - 2. for every (k + 1)-tuple of distinct points of P, there is a unique curve I from L passing through each point of this (k + 1)-tuple,
 - 3. any two distinct curves from L cross k times.

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:
 - 1. for every $l \in L$, there are at least k+1 points of P lying on l,
 - 2. for every (k + 1)-tuple of distinct points of P, there is a unique curve I from L passing through each point of this (k + 1)-tuple,
 - 3. any two distinct curves from L cross k times.

- A simple k-pseudoconfiguration is a set P of n points in the plane ordered by their increasing x-coordinates together with a collection L of x-monotone Jordan arcs such that:
 - 1. for every $l \in L$, there are at least k+1 points of P lying on l,
 - 2. for every (k + 1)-tuple of distinct points of P, there is a unique curve I from L passing through each point of this (k + 1)-tuple,
 - 3. any two distinct curves from L cross k times.

Theorem 7 (Miyata, 2017)

For $k, n \in \mathbb{N}$, there is a bijection between sign functions of simple k-pseudoconfigurations of n points and (k+2)-monotone colorings of \mathcal{K}_n^{k+2} .

• A subset S of P is (k + 1)st order monotone if the sign function of (P, L) attains only — or only + value on all of (k + 2)-tuples of S.

• A subset S of P is (k + 1)st order monotone if the sign function of (P, L) attains only — or only + value on all of (k + 2)-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a (k+1)st order monotone subset of size n equals $\overline{R}_{mon}(\mathcal{P}_n^{k+2})$.

• A subset S of P is (k + 1)st order monotone if the sign function of (P, L) attains only — or only + value on all of (k + 2)-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a (k+1)st order monotone subset of size n equals $\overline{R}_{mon}(\mathcal{P}_n^{k+2})$.

 The setting in which L contains polynomials of degree at most k corresponds to higher-order Erdős-Szekeres theorems by Eliáš and Matoušek.

• A subset S of P is (k + 1)st order monotone if the sign function of (P, L) attains only — or only + value on all of (k + 2)-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a (k+1)st order monotone subset of size n equals $\overline{R}_{mon}(\mathcal{P}_n^{k+2})$.

- The setting in which L contains polynomials of degree at most k corresponds to higher-order Erdős-Szekeres theorems by Eliáš and Matoušek.
- Can the curves from Theorem 7 be "stretched" to polynomials of degree at most *k*?

• A subset S of P is (k + 1)st order monotone if the sign function of (P, L) attains only — or only + value on all of (k + 2)-tuples of S.

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points contains a (k+1)st order monotone subset of size n equals $\overline{R}_{mon}(\mathcal{P}_n^{k+2})$.

- The setting in which L contains polynomials of degree at most k corresponds to higher-order Erdős-Szekeres theorems by Eliáš and Matoušek.
- Can the curves from Theorem 7 be "stretched" to polynomials of degree at most *k*?
- True for r < 4.

• Some aspects of *r*-monotone colorings remain unexplored.

- Some aspects of *r*-monotone colorings remain unexplored.
- How many *r*-monotone colorings of \mathcal{K}_n^r are there?

- Some aspects of *r*-monotone colorings remain unexplored.
- How many r-monotone colorings of \mathcal{K}_n^r are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_r(n)$ of r-monotone colorings of \mathcal{K}_n^r satisfies

$$2^{n^{r-1}/r^{4r}} \leq S_r(n) \leq 2^{2^{r-2}n^{r-1}/(r-1)!}.$$

- Some aspects of *r*-monotone colorings remain unexplored.
- How many *r*-monotone colorings of \mathcal{K}_n^r are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_r(n)$ of r-monotone colorings of \mathcal{K}_n^r satisfies

$$2^{n^{r-1}/r^{4r}} \leq S_r(n) \leq 2^{2^{r-2}n^{r-1}/(r-1)!}.$$

• Generalizes the well-known fact that the number of simple arrangements of n pseudolines is $2^{\Theta(n^2)}$ (case r=3).

- Some aspects of *r*-monotone colorings remain unexplored.
- How many r-monotone colorings of \mathcal{K}_n^r are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_r(n)$ of r-monotone colorings of \mathcal{K}_n^r satisfies

$$2^{n^{r-1}/r^{4r}} \leq S_r(n) \leq 2^{2^{r-2}n^{r-1}/(r-1)!}.$$

- Generalizes the well-known fact that the number of simple arrangements of n pseudolines is $2^{\Theta(n^2)}$ (case r=3).
- Extends previous estimates by Knuth and Felsner and Valtr.

- Some aspects of *r*-monotone colorings remain unexplored.
- How many *r*-monotone colorings of \mathcal{K}_n^r are there?

Theorem 9 (B., 2017+)

For $r \geq 3$ and $n \geq r$, the number $S_r(n)$ of r-monotone colorings of \mathcal{K}_n^r satisfies

$$2^{n^{r-1}/r^{4r}} \leq S_r(n) \leq 2^{2^{r-2}n^{r-1}/(r-1)!}.$$

- Generalizes the well-known fact that the number of simple arrangements of n pseudolines is $2^{\Theta(n^2)}$ (case r=3).
- Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.