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Monotone paths

The r -uniform monotone path P r
n is an r -uniform hypergraph with n

vertices and edges formed by r -tuples of consecutive vertices.

P2
7 P3

7

What is the growth rate of R(P r
n)?

That is, what is the smallest N ∈ N such that every 2-coloring of the

edges of Kr
N =

(
[N],

(
[N]
r

))
contains a monochromatic copy of P r

n.

This question was raised by Fox, Pach, Sudakov, and Suk (2012) who
proved

R(P r
n) ≤ towr−1(O(n log n))

for r ≥ 3, where tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2, and
asked whether

R(P r
n) ≤ towr−1(O(n)).



Monotone paths

The r -uniform monotone path P r
n is an r -uniform hypergraph with n

vertices and edges formed by r -tuples of consecutive vertices.

P2
7 P3

7

What is the growth rate of R(P r
n)?

That is, what is the smallest N ∈ N such that every 2-coloring of the

edges of Kr
N =

(
[N],

(
[N]
r

))
contains a monochromatic copy of P r

n.

This question was raised by Fox, Pach, Sudakov, and Suk (2012) who
proved

R(P r
n) ≤ towr−1(O(n log n))

for r ≥ 3, where tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2, and
asked whether

R(P r
n) ≤ towr−1(O(n)).



Monotone paths

The r -uniform monotone path P r
n is an r -uniform hypergraph with n

vertices and edges formed by r -tuples of consecutive vertices.

P2
7 P3

7

What is the growth rate of R(P r
n)?

That is, what is the smallest N ∈ N such that every 2-coloring of the

edges of Kr
N =

(
[N],

(
[N]
r

))
contains a monochromatic copy of P r

n.

This question was raised by Fox, Pach, Sudakov, and Suk (2012) who
proved

R(P r
n) ≤ towr−1(O(n log n))

for r ≥ 3, where tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2, and
asked whether

R(P r
n) ≤ towr−1(O(n)).



Monotone paths

The r -uniform monotone path P r
n is an r -uniform hypergraph with n

vertices and edges formed by r -tuples of consecutive vertices.

P2
7 P3

7

What is the growth rate of R(P r
n)?

That is, what is the smallest N ∈ N such that every 2-coloring of the

edges of Kr
N =

(
[N],

(
[N]
r

))
contains a monochromatic copy of P r

n.

This question was raised by Fox, Pach, Sudakov, and Suk (2012) who
proved

R(P r
n) ≤ towr−1(O(n log n))

for r ≥ 3, where tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2, and
asked whether

R(P r
n) ≤ towr−1(O(n)).



Monotone paths

The r -uniform monotone path P r
n is an r -uniform hypergraph with n

vertices and edges formed by r -tuples of consecutive vertices.

P2
7 P3

7

What is the growth rate of R(P r
n)?

That is, what is the smallest N ∈ N such that every 2-coloring of the

edges of Kr
N =

(
[N],

(
[N]
r

))
contains a monochromatic copy of P r

n.

This question was raised by Fox, Pach, Sudakov, and Suk (2012) who
proved

R(P r
n) ≤ towr−1(O(n log n))

for r ≥ 3, where tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2, and
asked whether

R(P r
n) ≤ towr−1(O(n)).



Monotone paths

The r -uniform monotone path P r
n is an r -uniform hypergraph with n

vertices and edges formed by r -tuples of consecutive vertices.

P2
7 P3

7

What is the growth rate of R(P r
n)?

That is, what is the smallest N ∈ N such that every 2-coloring of the

edges of Kr
N =

(
[N],

(
[N]
r

))
contains a monochromatic copy of P r

n.

This question was raised by Fox, Pach, Sudakov, and Suk (2012) who
proved

R(P r
n) ≤ towr−1(O(n log n))

for r ≥ 3, where tow1(x) = x and towh(x) = 2towh−1(x) for h ≥ 2, and
asked whether

R(P r
n) ≤ towr−1(O(n)).



Ordered Ramsey numbers: monotone paths

Nowadays, the numbers R(P r
n) are quite well understood.

Theorem 5 (Moshkovitz, Shapira, 2015)

For all positive integers n and r ≥ 3,

R(P r
n) = towr−1((2− o(1))n).

In fact, Moshkovitz and Shapira proved R(P r
n+r−1) = ρr (n) + 1, where

ρr (n) is the number of line partitions of order r .

1

2

3

4

5

...

n− 2

n− 21 2 43 55 . . .

In particular, R(P3
n) =

(
2n−4
n−2

)
+ 1.
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Motivation: the Erdős–Szekeres lemma

Estimating R(P2
n) generalizes the following classical result.

The Erdős–Szekeres lemma (Erdős, Szekeres, 1935)

For n ∈ N, every sequence of N = (n − 1)2 + 1 distinct numbers contains a
decreasing or an increasing subsequence of length n. Moreover, this is tight.

This is a corollary of the fact R(P2
n) = (n − 1)2 + 1.

For a sequence S = (s1, . . . , sN), color {si , sj} with i < j red if si < sj
and blue otherwise.

Then red monotone paths correspond to increasing and blue monotone
paths to decreasing subsequences of S .

Note: not every 2-coloring of E (KN) can be obtained this way.
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Motivation: the Cap-Cup Theorem

Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For n ≥ 2, every set of
(

2n−4
n−2

)
+ 1 points in the plane, with no three being

collinear, contains an n-cup or an n-cap. Moreover, this is tight.

The fact R(P3
n) =

(
2n−4
n−2

)
+ 1 yields new proof of the Cap-Cup Theorem.

It suffices to color triples of points according to their orientation.

Then red monotone paths are cups and blue ones are caps.
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For n ≥ 2, every set of
(

2n−4
n−2

)
+ 1 points in the plane, with no three being

collinear, contains an n-cup or an n-cap. Moreover, this is tight.

5-cap
5-cup

The fact R(P3
n) =

(
2n−4
n−2

)
+ 1 yields new proof of the Cap-Cup Theorem.

It suffices to color triples of points according to their orientation.

Then red monotone paths are cups and blue ones are caps.



Motivation: the Cap-Cup Theorem

Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)

For n ≥ 2, every set of
(

2n−4
n−2

)
+ 1 points in the plane, with no three being

collinear, contains an n-cup or an n-cap. Moreover, this is tight.

5-cap
5-cup

The fact R(P3
n) =

(
2n−4
n−2

)
+ 1 yields new proof of the Cap-Cup Theorem.

It suffices to color triples of points according to their orientation.

Then red monotone paths are cups and blue ones are caps.



Motivation: the Cap-Cup Theorem

Motivation comes also from discrete geometry.

The Cap-Cup Theorem (Erdős, Szekeres, 1935)
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Transitive colorings

Not all 2-colorings of E (Kr
N) can be obtained this way, the resulting

2-coloring is always transitive.

A 2-coloring c of the edges of Kr
N = (K r

N ,≺) is transitive if, for every
(r + 1)-tuple v1 ≺ · · · ≺ vr+1 of vertices with c({v1, . . . , vr}) =

c({v2, . . . , vr+1}), all r -tuples from
({v1,...,vr+1}

r

)
have the same color in c .

The coloring by Moshkovitz and Shapira that shows R(P3
n) >

(
2n−4
n−2

)
is

transitive.

However, such colorings for higher uniformities are not!
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Transitive Ramsey numbers

For r ≥ 2 and n, let the transitive Ramsey number Rtrans(P r
n) be the

minimum N such that every transitive 2-coloring of the edges of Kr
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contains monochromatic P r
n.

Clearly, Rtrans(P r
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We have

Rtrans(P2
n) = (n − 1)2 + 1 (the Erdős–Szekeres lemma),
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n) = 22Θ(n)
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Rtrans(P r

n) ≤ towr−1((2− o(1))n) for r ≥ 3 (Moshkovitz, Shapira).

Problem 1 (Eliáš, Matoušek and Moshkovitz, Shapira)

What is the growth rate of Rtrans(P r
n) for r > 4?

We settle this problem even for more restrictive colorings.
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Rtrans(P3
n) =

(
2n−4
n−2

)
+ 1 (the Cap-Cup Theorem),

Rtrans(P4
n) = 22Θ(n)
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Monotone colorings

A coloring of edges of Kr
N with − and + is r -monotone if there is at

most one change of a sign in the lexicographically ordered sequence of
r -tuples of vertices from every (r + 1)-tuple of vertices.

Every r -monotone coloring is transitive, but not the other way around
for r ≥ 3.

Known under many different names, admit geometric interpretations.



Monotone colorings

A coloring of edges of Kr
N with − and + is r -monotone if there is at

most one change of a sign in the lexicographically ordered sequence of
r -tuples of vertices from every (r + 1)-tuple of vertices.

Every r -monotone coloring is transitive, but not the other way around
for r ≥ 3.

Known under many different names, admit geometric interpretations.



Monotone colorings

A coloring of edges of Kr
N with − and + is r -monotone if there is at

most one change of a sign in the lexicographically ordered sequence of
r -tuples of vertices from every (r + 1)-tuple of vertices.

123 124 134 234

:r = 3 ++++ +++− ++−− +−−−
−−−− −−− −− −+ ++ +++

Every r -monotone coloring is transitive, but not the other way around
for r ≥ 3.

Known under many different names, admit geometric interpretations.



Monotone colorings

A coloring of edges of Kr
N with − and + is r -monotone if there is at

most one change of a sign in the lexicographically ordered sequence of
r -tuples of vertices from every (r + 1)-tuple of vertices.

123 124 134 234

:r = 3 ++++ +++− ++−− +−−−
−−−− −−− −− −+ ++ +++

Every r -monotone coloring is transitive, but not the other way around
for r ≥ 3.

Known under many different names, admit geometric interpretations.



Monotone colorings

A coloring of edges of Kr
N with − and + is r -monotone if there is at

most one change of a sign in the lexicographically ordered sequence of
r -tuples of vertices from every (r + 1)-tuple of vertices.

123 124 134 234

:r = 3 ++++ +++− ++−− +−−−
−−−− −−− −− −+ ++ +++

Every r -monotone coloring is transitive, but not the other way around
for r ≥ 3.

Known under many different names, admit geometric interpretations.



Monotone Ramsey numbers

For r ≥ 2 and n, let the monotone Ramsey number Rmon(P r
n) be the

minimum N such that every r -monotone coloring of the edges of Kr
N

contains monochromatic P r
n.

Clearly, Rmon(P r
n) ≤ Rtrans(P r

n) ≤ R(P r
n) with equalities for r = 2, 3.

All known bounds for Rtrans(P r
n) hold for Rmon(P r

n).

We derive asymptotically tight lower bound on Rmon(P r
n).

Theorem 6 (B., 2017+)

For n and r ≥ 3, we have

Rmon(P r
2n+r−1) ≥ towr−1((1− o(1))n).

In particular, this solves Problem 1.

Asymptotically tight, but the exponent can probably be improved.

Since r -monotone colorings admit geometric interpretations, we obtain
estimates for geometric Ramsey-type statements.
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Sketch of the construction

Construction of cr = c3 on N = 2n = 8 verties avoiding P r
2n+r−1 = P3

8 .

Vertices of K3
N = “diagonals” of a 2n × 2n lattice with paired elements

of two types, exactly one element from each pair.

For r = 4, these eight vertices form the “new diagonal”.
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Geometric interpretations: k-pseudoconfigurations

A simple k-pseudoconfiguration is a set P of n points in the plane
ordered by their increasing x-coordinates together with a collection L of
x-monotone Jordan arcs such that:

1. for every l ∈ L, there are at least k + 1 points of P lying on l ,
2. for every (k + 1)-tuple of distinct points of P , there is a unique

curve l from L passing through each point of this (k + 1)-tuple,
3. any two distinct curves from L cross k times.

Theorem 7 (Miyata, 2017)

For k , n ∈ N, there is a bijection between sign functions of simple
k-pseudoconfigurations of n points and (k + 2)-monotone colorings of Kk+2

n .
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Geometric interpretations: higher-order Erdős–Szekeres theorems

A subset S of P is (k + 1)st order monotone if the sign function of
(P , L) attains only − or only + value on all of (k + 2)-tuples of S .

Corollary 1

The minimum N such that every simple k-pseudoconfiguration of N points
contains a (k + 1)st order monotone subset of size n equals Rmon(Pk+2

n ).

The setting in which L contains polynomials of degree at most k
corresponds to higher-order Erdős–Szekeres theorems by Eliáš and
Matoušek.

Can the curves from Theorem 7 be “stretched” to polynomials of degree
at most k?

True for r ≤ 4.
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Counting r -monotone colorings

Some aspects of r -monotone colorings remain unexplored.

How many r -monotone colorings of Kr
n are there?

Theorem 9 (B., 2017+)

For r ≥ 3 and n ≥ r , the number Sr (n) of r -monotone colorings of Kr
n

satisfies
2nr−1/r4r ≤ Sr (n) ≤ 22r−2nr−1/(r−1)!.

Generalizes the well-known fact that the number of simple arrangements
of n pseudolines is 2Θ(n2) (case r = 3).

Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.



Counting r -monotone colorings

Some aspects of r -monotone colorings remain unexplored.

How many r -monotone colorings of Kr
n are there?

Theorem 9 (B., 2017+)

For r ≥ 3 and n ≥ r , the number Sr (n) of r -monotone colorings of Kr
n

satisfies
2nr−1/r4r ≤ Sr (n) ≤ 22r−2nr−1/(r−1)!.

Generalizes the well-known fact that the number of simple arrangements
of n pseudolines is 2Θ(n2) (case r = 3).

Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.



Counting r -monotone colorings

Some aspects of r -monotone colorings remain unexplored.

How many r -monotone colorings of Kr
n are there?

Theorem 9 (B., 2017+)

For r ≥ 3 and n ≥ r , the number Sr (n) of r -monotone colorings of Kr
n

satisfies
2nr−1/r4r ≤ Sr (n) ≤ 22r−2nr−1/(r−1)!.

Generalizes the well-known fact that the number of simple arrangements
of n pseudolines is 2Θ(n2) (case r = 3).

Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.



Counting r -monotone colorings

Some aspects of r -monotone colorings remain unexplored.

How many r -monotone colorings of Kr
n are there?

Theorem 9 (B., 2017+)

For r ≥ 3 and n ≥ r , the number Sr (n) of r -monotone colorings of Kr
n

satisfies
2nr−1/r4r ≤ Sr (n) ≤ 22r−2nr−1/(r−1)!.

Generalizes the well-known fact that the number of simple arrangements
of n pseudolines is 2Θ(n2) (case r = 3).

Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.



Counting r -monotone colorings

Some aspects of r -monotone colorings remain unexplored.

How many r -monotone colorings of Kr
n are there?

Theorem 9 (B., 2017+)

For r ≥ 3 and n ≥ r , the number Sr (n) of r -monotone colorings of Kr
n

satisfies
2nr−1/r4r ≤ Sr (n) ≤ 22r−2nr−1/(r−1)!.

Generalizes the well-known fact that the number of simple arrangements
of n pseudolines is 2Θ(n2) (case r = 3).

Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.



Counting r -monotone colorings

Some aspects of r -monotone colorings remain unexplored.

How many r -monotone colorings of Kr
n are there?

Theorem 9 (B., 2017+)

For r ≥ 3 and n ≥ r , the number Sr (n) of r -monotone colorings of Kr
n

satisfies
2nr−1/r4r ≤ Sr (n) ≤ 22r−2nr−1/(r−1)!.

Generalizes the well-known fact that the number of simple arrangements
of n pseudolines is 2Θ(n2) (case r = 3).

Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.



Counting r -monotone colorings

Some aspects of r -monotone colorings remain unexplored.

How many r -monotone colorings of Kr
n are there?

Theorem 9 (B., 2017+)

For r ≥ 3 and n ≥ r , the number Sr (n) of r -monotone colorings of Kr
n

satisfies
2nr−1/r4r ≤ Sr (n) ≤ 22r−2nr−1/(r−1)!.

Generalizes the well-known fact that the number of simple arrangements
of n pseudolines is 2Θ(n2) (case r = 3).

Extends previous estimates by Knuth and Felsner and Valtr.

Thank you.


