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e There are (at least) two known approaches.
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A lower bound on b(S)

o We are interested in a relationship between c(S) and b(S).
Observation

For every n € N there is a simple polygon P satisfying c(P) < % and
b(P) > % — ¢ forany ¢ > 0.

0,1) (1.1 @1) (3.1) @n—21) (2n—1,1)

(0,0)

e Thus b(P) is not bounded from above by a sublinear function of c(P).
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e What about an upper bound on b(S)?

Theorem (Cabello et al., 2014)
Every weakly star-shaped polygon P satisfies b(P) < 18 ¢(P). J

e In a weakly star-shaped set S, there is a line segment in S that sees the
entire S.

e Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)
Every simple polygon P satisfies b(P) < 12 ¢(P) <1 + log, T%)

Conjecture (Cabello et al., 2014)
There is @ > 0 so that for every simple polygon P we have b(P) < ac(P).
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The main result

Theorem

Every set S C R? with simply connected components satisfies b(S) < 180¢(S).

e Gives a positive answer to the previous conjecture.
e Up to a constant this is the best possible.
e We cannot omit the assumption about simple connectivity:

Ao

o In fact, S :=[0,1]? \ Q? gives c(S) = 0 and b(S) = 1.
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@ The main result fails in higher dimensions.

c(P)~1/n

e We introduce the following new parameter.

o For k € [d] and S C RY, let the k-index of convexity b(S) of S be the
probability that the convex hull of randomly chosen k + 1 points from S
is contained in S.

e That is,

~ Aernd({(A - Argr) € SKTE Conv{ Ay, ..., A} € S}
o Ag(S)k+H1

o Note that by(S) € [0,1] and by(S) = b(S).

bk(S) .
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Our results for by(S)

Theorem

For every d > 2, there is 3 = 3(d) > 0 such that every S C R satisfies
ba(S) < Bc(S).

e We do not know whether this upper bound is the best possible.
e It is optimal up to a logarithmic factor.

Theorem
For every d > 2, there is v = y(d) > 0 such that for every ¢ € (0, 1], there
is a set S C RY satisfying c(S) < ¢ and by(S) > 7@, and in particular,

S
we have by(S) > Viogy 1/c(5) f/l(s‘)
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Conjecture

For every d > 2, there is @ = a(d) > 0 such that if S C RY is a set whose
every component is contractible, then by_1(S) < ac(S).

e Does large b(S) imply existence of large triangle with boundary in S7
e More generally, is this true for b,(S) and k-skeletons Skel,(T)?

Conjecture

For every k,d € N such that 1 < k < d and every € > 0, thereisa ¢ >0
such that if S C R? is a set with b,(S) > ¢, then there is a simplex T such
that \y(T) > 0Aa(S) and Skel,(T) C S.

Thank you.



