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We are interested in a relationship between c(S) and b(S).

Observation

For every n ∈ N there is a simple polygon P satisfying c(P) ≤ 1
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Upper bounds on b(S)

What about an upper bound on b(S)?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies b(P) ≤ 18 c(P).

In a weakly star-shaped set S , there is a line segment in S that sees the
entire S .

Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)

Every simple polygon P satisfies b(P) ≤ 12 c(P)
(

1 + log2
1

c(P)

)
.

Conjecture (Cabello et al., 2014)

There is α > 0 so that for every simple polygon P we have b(P) ≤ α c(P).
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The main result

Theorem

Every set S ⊆ R2 with simply connected components satisfies b(S) ≤ 180 c(S).
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Up to a constant this is the best possible.

We cannot omit the assumption about simple connectivity:

In fact, S := [0, 1]2 \Q2 gives c(S) = 0 and b(S) = 1.
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Sketch of the proof

Main idea: assign a set R(A) ⊆ R2 of measure O(c(S)λ2(S)) to every
A ∈ S such that for every BC ⊆ S we have B ∈ R(C ) or C ∈ R(B).

Step 1: Reduce S to a bounded simply-connected open set.

Step 2: Partition S into weakly star-shaped sets.

Step 3: For A ∈ S , define R(A) (as a union of three trapezoids).
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Higher-order Beer index

The main result fails in higher dimensions.

We introduce the following new parameter.
For k ∈ [d ] and S ⊆ Rd , let the k-index of convexity bk(S) of S be the
probability that the convex hull of randomly chosen k + 1 points from S
is contained in S .
That is,

bk(S) :=
λ(k+1)d({(A1, . . . ,Ak+1) ∈ Sk+1 : Conv{A1, . . . ,Ak+1} ⊆ S})

λd(S)k+1
.

Note that bk(S) ∈ [0, 1] and b1(S) = b(S).
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Few observations

We have b1(S) ≥ b2(S) ≥ · · · ≥ bd(S).

For general set S only bd(S) admits a nontrivial upper bound in c(S).

The set S ′ := [0, 1]d \Qd satisfies c(S ′) = 0 and

b1(S ′) = b2(S ′) = · · · = bd−1(S ′) = 1.

Is there a nontrivial upper bound on bd(S)? Lower bounds?

In the plane this is not the original problem.
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Our results for bd(S)

Theorem

For every d ≥ 2, there is β = β(d) > 0 such that every S ⊆ Rd satisfies
bd(S) ≤ β c(S).

We do not know whether this upper bound is the best possible.

It is optimal up to a logarithmic factor.

Theorem

For every d ≥ 2, there is γ = γ(d) > 0 such that for every ε ∈ (0, 1], there
is a set S ⊆ Rd satisfying c(S) ≤ ε and bd(S) ≥ γ ε

log2 1/ε
, and in particular,

we have bd(S) ≥ γ c(S)
log2 1/ c(S)

.
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Open problems

Is there a linear upper bound on bd−1(S) for ‘topologically nice’ sets S?

Conjecture

For every d ≥ 2, there is α = α(d) > 0 such that if S ⊆ Rd is a set whose
every component is contractible, then bd−1(S) ≤ α c(S).

Does large b(S) imply existence of large triangle with boundary in S?

More generally, is this true for bk(S) and k-skeletons Skelk(T )?

Conjecture

For every k , d ∈ N such that 1 ≤ k ≤ d and every ε > 0, there is a δ > 0
such that if S ⊆ Rd is a set with bk(S) ≥ ε, then there is a simplex T such
that λd(T ) ≥ δλd(S) and Skelk(T ) ⊆ S .

Thank you.
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