On the Beer Index of Convexity and Its Variants

Martin Balko, Vít Jelínek, Pavel Valtr, and Bartosz Walczak
Charles University in Prague, Czech Republic

June 21, 2016

Measuring convexity

Measuring convexity

- How to measure convexity of a given polygon?

Measuring convexity

- How to measure convexity of a given polygon?

Measuring convexity

- How to measure convexity of a given polygon?

More convex

Less convex

Measuring convexity

- How to measure convexity of a given polygon?

More convex

Less convex

- There are (at least) two known approaches.

Measuring convexity via a largest convex subset

Measuring convexity via a largest convex subset

- Let S be a subset of the plane with finite positive $\lambda_{2}(S)$.

Measuring convexity via a largest convex subset

- Let S be a subset of the plane with finite positive $\lambda_{2}(S)$.
- The convexity ratio $c(S)$ of S is the supremum of the measures of convex subsets of S divided by $\lambda_{2}(S)$.

Measuring convexity via a largest convex subset

- Let S be a subset of the plane with finite positive $\lambda_{2}(S)$.
- The convexity ratio $c(S)$ of S is the supremum of the measures of convex subsets of S divided by $\lambda_{2}(S)$.

Measuring convexity via a largest convex subset

- Let S be a subset of the plane with finite positive $\lambda_{2}(S)$.
- The convexity ratio $c(S)$ of S is the supremum of the measures of convex subsets of S divided by $\lambda_{2}(S)$.

Measuring convexity via visibility

Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $\overline{A B} \subseteq S$.

Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $\overline{A B} \subseteq S$.
- The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.

Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $\overline{A B} \subseteq S$.
- The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$
\mathrm{b}(S):=\frac{\lambda_{4}(\{(A, B) \in S \times S: \overline{A B} \subseteq S\})}{\lambda_{2}(S)^{2}} \in[0,1] .
$$

Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $\overline{A B} \subseteq S$.
- The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$
\mathrm{b}(S):=\frac{\lambda_{4}(\{(A, B) \in S \times S: \overline{A B} \subseteq S\})}{\lambda_{2}(S)^{2}} \in[0,1] .
$$

- First studied by G. Beer in the 1970s.

Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $\overline{A B} \subseteq S$.
- The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$
\mathrm{b}(S):=\frac{\lambda_{4}(\{(A, B) \in S \times S: \overline{A B} \subseteq S\})}{\lambda_{2}(S)^{2}} \in[0,1] .
$$

- First studied by G. Beer in the 1970 s.

Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $\overline{A B} \subseteq S$.
- The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$
\mathrm{b}(S):=\frac{\lambda_{4}(\{(A, B) \in S \times S: \overline{A B} \subseteq S\})}{\lambda_{2}(S)^{2}} \in[0,1] .
$$

- First studied by G. Beer in the 1970 s.

A lower bound on $\mathrm{b}(S)$

A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $\mathrm{c}(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n}-\varepsilon$ for any $\varepsilon>0$.

A lower bound on $b(S)$

- We are interested in a relationship between $\mathrm{c}(S)$ and $\mathrm{b}(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $\mathrm{c}(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n}-\varepsilon$ for any $\varepsilon>0$.

A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $\mathrm{c}(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n}-\varepsilon$ for any $\varepsilon>0$.

A lower bound on $b(S)$

- We are interested in a relationship between $\mathrm{c}(S)$ and $\mathrm{b}(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $\mathrm{c}(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n}-\varepsilon$ for any $\varepsilon>0$.

A lower bound on $b(S)$

- We are interested in a relationship between $\mathrm{c}(S)$ and $\mathrm{b}(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $\mathrm{c}(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n}-\varepsilon$ for any $\varepsilon>0$.

A lower bound on $b(S)$

- We are interested in a relationship between $\mathrm{c}(S)$ and $\mathrm{b}(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $\mathrm{c}(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n}-\varepsilon$ for any $\varepsilon>0$.

- Thus $\mathrm{b}(P)$ is not bounded from above by a sublinear function of $\mathrm{c}(P)$.

Upper bounds on $\mathrm{b}(S)$

Upper bounds on $\mathrm{b}(S)$

- What about an upper bound on $\mathrm{b}(S)$?

Upper bounds on $\mathrm{b}(S)$

- What about an upper bound on $\mathrm{b}(S)$?

Theorem (Cabello et al., 2014)
Every weakly star-shaped polygon P satisfies $b(P) \leq 18 \mathrm{c}(P)$.

Upper bounds on $\mathrm{b}(S)$

- What about an upper bound on $\mathrm{b}(S)$?

Theorem (Cabello et al., 2014)
Every weakly star-shaped polygon P satisfies $b(P) \leq 18 \mathrm{c}(P)$.

- In a weakly star-shaped set S, there is a line segment in S that sees the entire S.

Upper bounds on $\mathrm{b}(S)$

- What about an upper bound on $\mathrm{b}(S)$?

Theorem (Cabello et al., 2014)
Every weakly star-shaped polygon P satisfies $b(P) \leq 18 \mathrm{c}(P)$.

- In a weakly star-shaped set S, there is a line segment in S that sees the entire S.
- Up to a constant, this is the best possible.

Upper bounds on $\mathrm{b}(S)$

- What about an upper bound on $\mathrm{b}(S)$?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \leq 18 \mathrm{c}(P)$.

- In a weakly star-shaped set S, there is a line segment in S that sees the entire S.
- Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)

Every simple polygon P satisfies $b(P) \leq 12 c(P)\left(1+\log _{2} \frac{1}{c(P)}\right)$.

Upper bounds on $\mathrm{b}(S)$

- What about an upper bound on $\mathrm{b}(S)$?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \leq 18 \mathrm{c}(P)$.

- In a weakly star-shaped set S, there is a line segment in S that sees the entire S.
- Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)

Every simple polygon P satisfies $b(P) \leq 12 c(P)\left(1+\log _{2} \frac{1}{c(P)}\right)$.

Conjecture (Cabello et al., 2014)
There is $\alpha>0$ so that for every simple polygon P we have $\mathrm{b}(P) \leq \alpha \mathrm{c}(P)$.

The main result

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

$$
n \times n
$$

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

The main result

Theorem

Every set $S \subseteq \mathbb{R}^{2}$ with simply connected components satisfies $\mathrm{b}(S) \leq 180 \mathrm{c}(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

- In fact, $S:=[0,1]^{2} \backslash \mathbb{Q}^{2}$ gives $\mathrm{c}(S)=0$ and $\mathrm{b}(S)=1$.

Sketch of the proof

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.
- Step 1: Reduce S to a bounded simply-connected open set.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

Sketch of the proof

- Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^{2}$ of measure $O\left(c(S) \lambda_{2}(S)\right)$ to every $A \in S$ such that for every $\overline{B C} \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition S into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

Higher-order Beer index

Higher-order Beer index

- The main result fails in higher dimensions.

Higher-order Beer index

- The main result fails in higher dimensions.

Higher-order Beer index

- The main result fails in higher dimensions.

Higher-order Beer index

- The main result fails in higher dimensions.

- We introduce the following new parameter.

Higher-order Beer index

- The main result fails in higher dimensions.

- We introduce the following new parameter.
- For $k \in[d]$ and $S \subseteq \mathbb{R}^{d}$, let the k-index of convexity $\mathrm{b}_{k}(S)$ of S be the probability that the convex hull of randomly chosen $k+1$ points from S is contained in S.

Higher-order Beer index

- The main result fails in higher dimensions.

- We introduce the following new parameter.
- For $k \in[d]$ and $S \subseteq \mathbb{R}^{d}$, let the k-index of convexity $\mathrm{b}_{k}(S)$ of S be the probability that the convex hull of randomly chosen $k+1$ points from S is contained in S.
- That is,
$\mathrm{b}_{k}(S):=\frac{\lambda_{(k+1) d}\left(\left\{\left(A_{1}, \ldots, A_{k+1}\right) \in S^{k+1}: \operatorname{Conv}\left\{A_{1}, \ldots, A_{k+1}\right\} \subseteq S\right\}\right)}{\lambda_{d}(S)^{k+1}}$.

Higher-order Beer index

- The main result fails in higher dimensions.

- We introduce the following new parameter.
- For $k \in[d]$ and $S \subseteq \mathbb{R}^{d}$, let the k-index of convexity $\mathrm{b}_{k}(S)$ of S be the probability that the convex hull of randomly chosen $k+1$ points from S is contained in S.
- That is,

$$
\mathrm{b}_{k}(S):=\frac{\lambda_{(k+1) d}\left(\left\{\left(A_{1}, \ldots, A_{k+1}\right) \in S^{k+1}: \operatorname{Conv}\left\{A_{1}, \ldots, A_{k+1}\right\} \subseteq S\right\}\right)}{\lambda_{d}(S)^{k+1}} .
$$

- Note that $\mathrm{b}_{k}(S) \in[0,1]$ and $\mathrm{b}_{1}(S)=\mathrm{b}(S)$.

Few observations

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.
- For general set S only $\mathrm{b}_{d}(S)$ admits a nontrivial upper bound in $\mathrm{c}(S)$.

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.
- For general set S only $b_{d}(S)$ admits a nontrivial upper bound in $c(S)$.
- The set $S^{\prime}:=[0,1]^{d} \backslash \mathbb{Q}^{d}$ satisfies $c\left(S^{\prime}\right)=0$ and

$$
\mathrm{b}_{1}\left(S^{\prime}\right)=\mathrm{b}_{2}\left(S^{\prime}\right)=\cdots=\mathrm{b}_{d-1}\left(S^{\prime}\right)=1
$$

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.
- For general set S only $b_{d}(S)$ admits a nontrivial upper bound in $c(S)$.
- The set $S^{\prime}:=[0,1]^{d} \backslash \mathbb{Q}^{d}$ satisfies $c\left(S^{\prime}\right)=0$ and

$$
\mathrm{b}_{1}\left(S^{\prime}\right)=\mathrm{b}_{2}\left(S^{\prime}\right)=\cdots=\mathrm{b}_{d-1}\left(S^{\prime}\right)=1
$$

- Is there a nontrivial upper bound on $\mathrm{b}_{d}(S)$? Lower bounds?

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.
- For general set S only $b_{d}(S)$ admits a nontrivial upper bound in $c(S)$.
- The set $S^{\prime}:=[0,1]^{d} \backslash \mathbb{Q}^{d}$ satisfies $c\left(S^{\prime}\right)=0$ and

$$
\mathrm{b}_{1}\left(S^{\prime}\right)=\mathrm{b}_{2}\left(S^{\prime}\right)=\cdots=\mathrm{b}_{d-1}\left(S^{\prime}\right)=1
$$

- Is there a nontrivial upper bound on $\mathrm{b}_{d}(S)$? Lower bounds?
- In the plane this is not the original problem.

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.
- For general set S only $b_{d}(S)$ admits a nontrivial upper bound in $c(S)$.
- The set $S^{\prime}:=[0,1]^{d} \backslash \mathbb{Q}^{d}$ satisfies $c\left(S^{\prime}\right)=0$ and

$$
\mathrm{b}_{1}\left(S^{\prime}\right)=\mathrm{b}_{2}\left(S^{\prime}\right)=\cdots=\mathrm{b}_{d-1}\left(S^{\prime}\right)=1
$$

- Is there a nontrivial upper bound on $b_{d}(S)$? Lower bounds?
- In the plane this is not the original problem.

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.
- For general set S only $b_{d}(S)$ admits a nontrivial upper bound in $c(S)$.
- The set $S^{\prime}:=[0,1]^{d} \backslash \mathbb{Q}^{d}$ satisfies $c\left(S^{\prime}\right)=0$ and

$$
\mathrm{b}_{1}\left(S^{\prime}\right)=\mathrm{b}_{2}\left(S^{\prime}\right)=\cdots=\mathrm{b}_{d-1}\left(S^{\prime}\right)=1
$$

- Is there a nontrivial upper bound on $b_{d}(S)$? Lower bounds?
- In the plane this is not the original problem.

Few observations

- We have $b_{1}(S) \geq b_{2}(S) \geq \cdots \geq b_{d}(S)$.
- For general set S only $b_{d}(S)$ admits a nontrivial upper bound in $c(S)$.
- The set $S^{\prime}:=[0,1]^{d} \backslash \mathbb{Q}^{d}$ satisfies $c\left(S^{\prime}\right)=0$ and

$$
\mathrm{b}_{1}\left(S^{\prime}\right)=\mathrm{b}_{2}\left(S^{\prime}\right)=\cdots=\mathrm{b}_{d-1}\left(S^{\prime}\right)=1
$$

- Is there a nontrivial upper bound on $b_{d}(S)$? Lower bounds?
- In the plane this is not the original problem.

Our results for $\mathrm{b}_{d}(S)$

Our results for $\mathrm{b}_{d}(S)$

Theorem

For every $d \geq 2$, there is $\beta=\beta(d)>0$ such that every $S \subseteq \mathbb{R}^{d}$ satisfies $\mathrm{b}_{d}(S) \leq \beta \mathrm{c}(S)$.

Our results for $\mathrm{b}_{d}(S)$

Theorem

For every $d \geq 2$, there is $\beta=\beta(d)>0$ such that every $S \subseteq \mathbb{R}^{d}$ satisfies $\mathrm{b}_{d}(S) \leq \beta \mathrm{c}(S)$.

- We do not know whether this upper bound is the best possible.

Our results for $\mathrm{b}_{d}(S)$

Theorem

For every $d \geq 2$, there is $\beta=\beta(d)>0$ such that every $S \subseteq \mathbb{R}^{d}$ satisfies $\mathrm{b}_{d}(S) \leq \beta \mathrm{c}(S)$.

- We do not know whether this upper bound is the best possible.
- It is optimal up to a logarithmic factor.

Our results for $\mathrm{b}_{d}(S)$

Theorem

For every $d \geq 2$, there is $\beta=\beta(d)>0$ such that every $S \subseteq \mathbb{R}^{d}$ satisfies $\mathrm{b}_{d}(S) \leq \beta \mathrm{c}(S)$.

- We do not know whether this upper bound is the best possible.
- It is optimal up to a logarithmic factor.

Theorem

For every $d \geq 2$, there is $\gamma=\gamma(d)>0$ such that for every $\varepsilon \in(0,1]$, there is a set $S \subseteq \mathbb{R}^{d}$ satisfying $\mathrm{c}(S) \leq \varepsilon$ and $\mathrm{b}_{d}(S) \geq \gamma \frac{\varepsilon}{\log _{2} 1 / \varepsilon}$, and in particular, we have $\mathrm{b}_{d}(S) \geq \gamma \frac{\mathrm{c}(S)}{\log _{2} 1 / \mathrm{c}(S)}$.

Open problems

Open problems

- Is there a linear upper bound on $\mathrm{b}_{d-1}(S)$ for 'topologically nice' sets S ?

Open problems

- Is there a linear upper bound on $\mathrm{b}_{d-1}(S)$ for 'topologically nice' sets S ?

Conjecture

For every $d \geq 2$, there is $\alpha=\alpha(d)>0$ such that if $S \subseteq \mathbb{R}^{d}$ is a set whose every component is contractible, then $\mathrm{b}_{d-1}(S) \leq \alpha \mathrm{c}(S)$.

Open problems

- Is there a linear upper bound on $\mathrm{b}_{d-1}(S)$ for 'topologically nice' sets S ?

Conjecture

For every $d \geq 2$, there is $\alpha=\alpha(d)>0$ such that if $S \subseteq \mathbb{R}^{d}$ is a set whose every component is contractible, then $\mathrm{b}_{d-1}(S) \leq \alpha \mathrm{c}(S)$.

- Does large $\mathrm{b}(S)$ imply existence of large triangle with boundary in S ?

Open problems

- Is there a linear upper bound on $\mathrm{b}_{d-1}(S)$ for 'topologically nice' sets S ?

Conjecture

For every $d \geq 2$, there is $\alpha=\alpha(d)>0$ such that if $S \subseteq \mathbb{R}^{d}$ is a set whose every component is contractible, then $\mathrm{b}_{d-1}(S) \leq \alpha \mathrm{c}(S)$.

- Does large $\mathrm{b}(S)$ imply existence of large triangle with boundary in S ?
- More generally, is this true for $\mathrm{b}_{k}(S)$ and k-skeletons $\operatorname{Skel}_{k}(T)$?

Open problems

- Is there a linear upper bound on $\mathrm{b}_{d-1}(S)$ for 'topologically nice' sets S ?

Conjecture

For every $d \geq 2$, there is $\alpha=\alpha(d)>0$ such that if $S \subseteq \mathbb{R}^{d}$ is a set whose every component is contractible, then $\mathrm{b}_{d-1}(S) \leq \alpha \mathrm{c}(S)$.

- Does large $\mathrm{b}(S)$ imply existence of large triangle with boundary in S ?
- More generally, is this true for $\mathrm{b}_{k}(S)$ and k-skeletons $\operatorname{Skel}_{k}(T)$?

Conjecture

For every $k, d \in \mathbb{N}$ such that $1 \leq k \leq d$ and every $\varepsilon>0$, there is a $\delta>0$ such that if $S \subseteq \mathbb{R}^{d}$ is a set with $\mathrm{b}_{k}(S) \geq \varepsilon$, then there is a simplex T such that $\lambda_{d}(T) \geq \delta \lambda_{d}(S)$ and $\operatorname{Skel}_{k}(T) \subseteq S$.

Open problems

- Is there a linear upper bound on $\mathrm{b}_{d-1}(S)$ for 'topologically nice' sets S ?

Conjecture

For every $d \geq 2$, there is $\alpha=\alpha(d)>0$ such that if $S \subseteq \mathbb{R}^{d}$ is a set whose every component is contractible, then $\mathrm{b}_{d-1}(S) \leq \alpha \mathrm{c}(S)$.

- Does large $\mathrm{b}(S)$ imply existence of large triangle with boundary in S ?
- More generally, is this true for $\mathrm{b}_{k}(S)$ and k-skeletons $\operatorname{Skel}_{k}(T)$?

Conjecture

For every $k, d \in \mathbb{N}$ such that $1 \leq k \leq d$ and every $\varepsilon>0$, there is a $\delta>0$ such that if $S \subseteq \mathbb{R}^{d}$ is a set with $\mathrm{b}_{k}(S) \geq \varepsilon$, then there is a simplex T such that $\lambda_{d}(T) \geq \delta \lambda_{d}(S)$ and $\operatorname{Skel}_{k}(T) \subseteq S$.

Thank you.

