On the Beer Index of Convexity and Its Variants

Martin Balko, Vít Jelínek, Pavel Valtr, and Bartosz Walczak

Charles University in Prague, Czech Republic

June 21, 2016

• How to measure convexity of a given polygon?

• How to measure convexity of a given polygon?

• How to measure convexity of a given polygon?

• How to measure convexity of a given polygon?

• There are (at least) two known approaches.

• Let S be a subset of the plane with finite positive $\lambda_2(S)$.

- Let S be a subset of the plane with finite positive $\lambda_2(S)$.
- The convexity ratio c(S) of S is the supremum of the measures of convex subsets of S divided by $\lambda_2(S)$.

- Let S be a subset of the plane with finite positive $\lambda_2(S)$.
- The convexity ratio c(S) of S is the supremum of the measures of convex subsets of S divided by $\lambda_2(S)$.

- Let S be a subset of the plane with finite positive $\lambda_2(S)$.
- The convexity ratio c(S) of S is the supremum of the measures of convex subsets of S divided by $\lambda_2(S)$.

• Points $A, B \in S$ see each other in S if we have $\overline{AB} \subseteq S$.

- Points $A, B \in S$ see each other in S if we have $\overline{AB} \subseteq S$.
- The Beer index of convexity b(S) of S is the probability that two randomly chosen points from S see each other in S.

- Points $A, B \in S$ see each other in S if we have $\overline{AB} \subseteq S$.
- The Beer index of convexity b(S) of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$\mathsf{b}(S) := \frac{\lambda_4(\{(A,B) \in S \times S \colon \overline{AB} \subseteq S\})}{\lambda_2(S)^2} \in [0,1].$$

- Points $A, B \in S$ see each other in S if we have $\overline{AB} \subseteq S$.
- The Beer index of convexity b(S) of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$\mathsf{b}(S) := \frac{\lambda_4(\{(A,B) \in S \times S \colon \overline{AB} \subseteq S\})}{\lambda_2(S)^2} \in [0,1].$$

• First studied by G. Beer in the 1970s.

- Points $A, B \in S$ see each other in S if we have $\overline{AB} \subseteq S$.
- The Beer index of convexity b(S) of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$\mathsf{b}(S) := \frac{\lambda_4(\{(A,B) \in S \times S \colon \overline{AB} \subseteq S\})}{\lambda_2(S)^2} \in [0,1].$$

• First studied by G. Beer in the 1970s.

- Points $A, B \in S$ see each other in S if we have $\overline{AB} \subseteq S$.
- The Beer index of convexity b(S) of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$\mathsf{b}(S) := \frac{\lambda_4(\{(A,B) \in S \times S \colon \overline{AB} \subseteq S\})}{\lambda_2(S)^2} \in [0,1].$$

• First studied by G. Beer in the 1970s.

• We are interested in a relationship between c(S) and b(S).

• We are interested in a relationship between c(S) and b(S).

Observation

• We are interested in a relationship between c(S) and b(S).

Observation

• We are interested in a relationship between c(S) and b(S).

Observation

• We are interested in a relationship between c(S) and b(S).

Observation

• We are interested in a relationship between c(S) and b(S).

Observation

• We are interested in a relationship between c(S) and b(S).

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $c(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n} - \varepsilon$ for any $\varepsilon > 0$.

• Thus b(P) is not bounded from above by a sublinear function of c(P).

• What about an upper bound on b(S)?

• What about an upper bound on b(S)?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \le 18 c(P)$.

• What about an upper bound on b(S)?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \le 18 c(P)$.

• In a weakly star-shaped set *S*, there is a *line segment* in *S* that sees the entire *S*.

• What about an upper bound on b(S)?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \le 18 c(P)$.

- In a weakly star-shaped set *S*, there is a *line segment* in *S* that sees the entire *S*.
- Up to a constant, this is the best possible.

• What about an upper bound on b(S)?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \le 18 c(P)$.

- In a weakly star-shaped set *S*, there is a *line segment* in *S* that sees the entire *S*.
- Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)

Every simple polygon P satisfies $b(P) \le 12 c(P) \left(1 + \log_2 \frac{1}{c(P)}\right)$.

• What about an upper bound on b(S)?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \le 18 c(P)$.

- In a weakly star-shaped set *S*, there is a *line segment* in *S* that sees the entire *S*.
- Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)

Every simple polygon P satisfies $b(P) \le 12 c(P) \left(1 + \log_2 \frac{1}{c(P)}\right)$.

Conjecture (Cabello et al., 2014)

There is $\alpha > 0$ so that for every simple polygon P we have $b(P) \le \alpha c(P)$.

The main result

The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \le 180 c(S)$.

The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \le 180 c(S)$.

• Gives a positive answer to the previous conjecture.

Theorem

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.

Theorem

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

Theorem

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

Theorem

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

$$c(P) \sim 1/n$$

Theorem

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

Theorem

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

$$b(P) = 1$$

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \le 180 c(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

$$b(P) = 1$$

• In fact, $S := [0,1]^2 \setminus \mathbb{Q}^2$ gives c(S) = 0 and b(S) = 1.

• Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

• Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

• Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

• Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

• Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- Step 1: Reduce *S* to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.

- Step 1: Reduce *S* to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.

- Step 1: Reduce *S* to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.

- Step 1: Reduce *S* to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

- Step 1: Reduce S to a bounded simply-connected open set.
- Step 2: Partition *S* into weakly star-shaped sets.
- Step 3: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).

• The main result fails in higher dimensions.

• We introduce the following new parameter.

- We introduce the following new parameter.
- For $k \in [d]$ and $S \subseteq \mathbb{R}^d$, let the k-index of convexity $b_k(S)$ of S be the probability that the convex hull of randomly chosen k+1 points from S is contained in S.

- We introduce the following new parameter.
- For $k \in [d]$ and $S \subseteq \mathbb{R}^d$, let the k-index of convexity $b_k(S)$ of S be the probability that the convex hull of randomly chosen k+1 points from S is contained in S.
- That is,

$$\mathsf{b}_k(S) := rac{\lambda_{(k+1)d}(\{(A_1,\ldots,A_{k+1}) \in S^{k+1} \colon \mathsf{Conv}\{A_1,\ldots,A_{k+1}\} \subseteq S\})}{\lambda_d(S)^{k+1}}.$$

• The main result fails in higher dimensions.

- We introduce the following new parameter.
- For $k \in [d]$ and $S \subseteq \mathbb{R}^d$, let the k-index of convexity $b_k(S)$ of S be the probability that the convex hull of randomly chosen k+1 points from S is contained in S.
- That is,

$$\mathsf{b}_k(S) := \frac{\lambda_{(k+1)d}(\{(A_1, \dots, A_{k+1}) \in S^{k+1} \colon \mathsf{Conv}\{A_1, \dots, A_{k+1}\} \subseteq S\})}{\lambda_d(S)^{k+1}}.$$

• Note that $b_k(S) \in [0,1]$ and $b_1(S) = b(S)$.

• We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.

- We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in c(S).

- We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in c(S).
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies c(S') = 0 and

$$b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.$$

- We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in c(S).
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies c(S') = 0 and

$$b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.$$

• Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?

- We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in c(S).
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies c(S') = 0 and

$$b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.$$

- Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?
- In the plane this is not the original problem.

- We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in c(S).
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies c(S') = 0 and

$$b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.$$

- Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?
- In the plane this is not the original problem.

- We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in c(S).
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies c(S') = 0 and

$$b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.$$

- Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?
- In the plane this is not the original problem.

- We have $b_1(S) \ge b_2(S) \ge \cdots \ge b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in c(S).
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies c(S') = 0 and

$$b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.$$

- Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?
- In the plane this is not the original problem.

Theorem

For every $d \ge 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \le \beta c(S)$.

Theorem

For every $d \geq 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \leq \beta c(S)$.

• We do not know whether this upper bound is the best possible.

Theorem

For every $d \geq 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \leq \beta c(S)$.

- We do not know whether this upper bound is the best possible.
- It is optimal up to a logarithmic factor.

Theorem

For every $d \ge 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \le \beta c(S)$.

- We do not know whether this upper bound is the best possible.
- It is optimal up to a logarithmic factor.

Theorem

For every $d \geq 2$, there is $\gamma = \gamma(d) > 0$ such that for every $\varepsilon \in (0,1]$, there is a set $S \subseteq \mathbb{R}^d$ satisfying $c(S) \leq \varepsilon$ and $b_d(S) \geq \gamma \frac{\varepsilon}{\log_2 1/\varepsilon}$, and in particular, we have $b_d(S) \geq \gamma \frac{c(S)}{\log_2 1/c(S)}$.

• Is there a linear upper bound on $b_{d-1}(S)$ for 'topologically nice' sets S?

• Is there a linear upper bound on $b_{d-1}(S)$ for 'topologically nice' sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

• Is there a linear upper bound on $b_{d-1}(S)$ for 'topologically nice' sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

• Does large b(S) imply existence of large triangle with boundary in S?

• Is there a linear upper bound on $b_{d-1}(S)$ for 'topologically nice' sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

- Does large b(S) imply existence of large triangle with boundary in S?
- More generally, is this true for $b_k(S)$ and k-skeletons $Skel_k(T)$?

• Is there a linear upper bound on $b_{d-1}(S)$ for 'topologically nice' sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

- Does large b(S) imply existence of large triangle with boundary in S?
- More generally, is this true for $b_k(S)$ and k-skeletons $Skel_k(T)$?

Conjecture

For every $k, d \in \mathbb{N}$ such that $1 \leq k \leq d$ and every $\varepsilon > 0$, there is a $\delta > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set with $b_k(S) \geq \varepsilon$, then there is a simplex T such that $\lambda_d(T) \geq \delta \lambda_d(S)$ and $\mathrm{Skel}_k(T) \subseteq S$.

• Is there a linear upper bound on $b_{d-1}(S)$ for 'topologically nice' sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

- Does large b(S) imply existence of large triangle with boundary in S?
- More generally, is this true for $b_k(S)$ and k-skeletons $Skel_k(T)$?

Conjecture

For every $k, d \in \mathbb{N}$ such that $1 \le k \le d$ and every $\varepsilon > 0$, there is a $\delta > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set with $b_k(S) \ge \varepsilon$, then there is a simplex T such that $\lambda_d(T) \ge \delta \lambda_d(S)$ and $\mathsf{Skel}_k(T) \subseteq S$.

Thank you.