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Ramsey’s theorem for graphs

For every graph G there is an integer N = N(G) such that every 2-coloring
of the edges of Kj contains a monochromatic copy of G.

e Ramsey number R(G) of G is the smallest such N.

Example: R(C4) =6
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R(Ca) =10 R(Cg) = 11 R(Cc) = 14
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e We consider graphs with the maximum degree bounded by a constant.
@ There is a substantial difference between ordered and unordered case.

Theorem (Chviétal, Rodl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

R(G) < O(n).

Theorem (B., Cibulka, Kral, Kyn&l and Conlon, Fox, Lee, Sudakov, 2014)
There are arbitrarily large ordered matchings M, on n vertices such that

R(M.,) > neshis).
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e Conlon et al. showed that this holds for almost every ordered matching.
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Smallest ordered Ramsey numbers

o There are n-vertex ordered matchings M with R(M) linear in n.

M R(M1),RIM>) < 2n =2

M -

@ Which orderings have asymptotically smallest ordered Ramsey numbers?
@ When can we attain linear ordered Ramsey numbers?

Problem (Conlon, Fox, Lee, Sudakov, 2014)

Do random 3-regular graphs have superlinear ordered Ramsey numbers for
all orderings?
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Superlinear lower bound

e We give a positive answer to the problem of Conlon et al.
e min-R(G) is the minimum of R(G) over all orderings G of G.

Theorem
For every d > 3, almost every d-regular graph G on n vertices satisfies

n3/2-1/d

in-R(G) > :
min-R( )_4|ogn|og|ogn

o For 3-regular graphs, we obtain min-R(G) > m.
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Sketch of the proof

@ For d > 3, let G be a d-regular graph on n vertices.

e Key lemma: Almost every such G satisfies the following: for every
partition of V(G) into few sets Xi, ..., X;, each of size at most s, there
are many pairs (X;, X;) with an edge between them. Here,

t = n/(2log nloglog n) and s = n'/271/d /2,

e We use an estimate by Bender and Canfield and by Wormald for the
number of d-regular graphs on n vertices.
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2-regular graphs

Theorem
Every graph G with n vertices and with maximum degree at most two satisfies

min-R(G) < O(n).

e First, for every n, we find an ordering C, of C, with R(C,) linear in n.
e Second, we find an ordering of a disjoint union G of these ordered cycles

with linear R(G).
e Placing cycles sequentially does not work.

@mmmm
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n/3-1
—N— 4n/9
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graph G on n vertices with maximum degree 2 admits an ordering G of G
that is contained in every ordered graph with N > C(¢)n vertices and with
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@ Orderings of disjoint union of cycles are constructed as follows.

e For bipartite 2-regular graphs we obtain a stronger Turan-type result.

Theorem

For each £ > 0, there is C(2) such that, for every n € N, every bipartite
graph G on n vertices with maximum degree 2 admits an ordering G of G
that is contained in every ordered graph with N > C(¢)n vertices and with
at least eN? edges.

e No longer true if G contains an odd cycle.
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@ A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.
Corollary

Every graph G with n vertices and with maximum degree d satisfies

min-R(G) < O(n(d+DMoe(d+1)1+1)

o The upper and lower bounds for min-R(G) are far apart.
Problem

Improve the upper and lower bounds on min-R(G) for 3-regular graphs G. J

Thank you.



