
On ordered Ramsey numbers of bounded-degree graphs

Martin Balko, V́ıt Jeĺınek, Pavel Valtr

Charles University in Prague,
Czech Republic

June 9, 2016



Ramsey theory

Ramsey’s theorem for graphs

For every graph G there is an integer N = N(G ) such that every 2-coloring
of the edges of KN contains a monochromatic copy of G .

Ramsey number R(G ) of G is the smallest such N .

Example: R(C4) = 6
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Ordered Ramsey numbers

An ordered graph G is a pair (G ,≺) where G is a graph and ≺ is a total
ordering of its vertices.

(H ,≺1) is an ordered subgraph of (G ,≺2) if H ⊆ G and ≺1⊆≺2.

The ordered Ramsey number R(G) of an ordered graph G is the least
number N such that every 2-coloring of edges of KN contains a
monochromatic copy of G as an ordered subgraph.
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Bounded-degree graphs

We consider graphs with the maximum degree bounded by a constant.

There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

R(G ) ≤ O(n).

Theorem (B., Cibulka, Král, Kynčl and Conlon, Fox, Lee, Sudakov, 2014)

There are arbitrarily large ordered matchings Mn on n vertices such that

R(Mn) ≥ nΩ( log n
log log n).

Conlon et al. showed that this holds for almost every ordered matching.
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Theorem (B., Cibulka, Král, Kynčl and Conlon, Fox, Lee, Sudakov, 2014)

There are arbitrarily large ordered matchings Mn on n vertices such that

R(Mn) ≥ nΩ( log n
log log n).

Conlon et al. showed that this holds for almost every ordered matching.



Bounded-degree graphs

We consider graphs with the maximum degree bounded by a constant.

There is a substantial difference between ordered and unordered case.
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There are n-vertex ordered matchings M with R(M) linear in n.

Which orderings have asymptotically smallest ordered Ramsey numbers?

When can we attain linear ordered Ramsey numbers?

Problem (Conlon, Fox, Lee, Sudakov, 2014)

Do random 3-regular graphs have superlinear ordered Ramsey numbers for
all orderings?
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Superlinear lower bound

We give a positive answer to the problem of Conlon et al.

min-R(G ) is the minimum of R(G) over all orderings G of G .

Theorem

For every d ≥ 3, almost every d-regular graph G on n vertices satisfies

min-R(G ) ≥ n3/2−1/d

4 log n log log n
.

For 3-regular graphs, we obtain min-R(G ) ≥ n7/6

4 log n log log n
.



Superlinear lower bound

We give a positive answer to the problem of Conlon et al.

min-R(G ) is the minimum of R(G) over all orderings G of G .

Theorem

For every d ≥ 3, almost every d-regular graph G on n vertices satisfies

min-R(G ) ≥ n3/2−1/d

4 log n log log n
.

For 3-regular graphs, we obtain min-R(G ) ≥ n7/6

4 log n log log n
.



Superlinear lower bound

We give a positive answer to the problem of Conlon et al.

min-R(G ) is the minimum of R(G) over all orderings G of G .

Theorem

For every d ≥ 3, almost every d-regular graph G on n vertices satisfies

min-R(G ) ≥ n3/2−1/d

4 log n log log n
.

For 3-regular graphs, we obtain min-R(G ) ≥ n7/6

4 log n log log n
.



Superlinear lower bound

We give a positive answer to the problem of Conlon et al.

min-R(G ) is the minimum of R(G) over all orderings G of G .

Theorem

For every d ≥ 3, almost every d-regular graph G on n vertices satisfies

min-R(G ) ≥ n3/2−1/d

4 log n log log n
.

For 3-regular graphs, we obtain min-R(G ) ≥ n7/6

4 log n log log n
.



Superlinear lower bound

We give a positive answer to the problem of Conlon et al.

min-R(G ) is the minimum of R(G) over all orderings G of G .

Theorem

For every d ≥ 3, almost every d-regular graph G on n vertices satisfies

min-R(G ) ≥ n3/2−1/d

4 log n log log n
.

For 3-regular graphs, we obtain min-R(G ) ≥ n7/6

4 log n log log n
.



Sketch of the proof

For d ≥ 3, let G be a d-regular graph on n vertices.

Key lemma: Almost every such G satisfies the following: for every
partition of V (G ) into few sets X1, . . . ,Xt , each of size at most s, there
are many pairs (Xi ,Xj) with an edge between them. Here,
t = n/(2 log n log log n) and s = n1/2−1/d/2.

We use an estimate by Bender and Canfield and by Wormald for the
number of d-regular graphs on n vertices.
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2-regular graphs

Theorem

Every graph G with n vertices and with maximum degree at most two satisfies

min-R(G ) ≤ O(n).

First, for every n, we find an ordering Cn of Cn with R(Cn) linear in n.

Second, we find an ordering of a disjoint union G of these ordered cycles
with linear R(G).

Placing cycles sequentially does not work.
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Sketch of the proof I

Linear ordering of cycles are based on alternating paths Pn.

B., Cibulka, Král, Kynčl showed R(Pn) ≤ O(n).

Lemma

For every ε > 0 and every n ∈ N, every ordered graph on N ≥ n/ε vertices
with at least εN2 edges contains Pn as an ordered subgraph.

We use this result to “blow-up” Pn and obtain linear orderings of cycles.
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Sketch of the proof II

Orderings of disjoint union of cycles are constructed as follows.

For bipartite 2-regular graphs we obtain a stronger Turán-type result.

Theorem

For each ε > 0, there is C (ε) such that, for every n ∈ N, every bipartite
graph G on n vertices with maximum degree 2 admits an ordering G of G
that is contained in every ordered graph with N ≥ C (ε)n vertices and with
at least εN2 edges.

No longer true if G contains an odd cycle.
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No longer true if G contains an odd cycle.
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Final remarks

A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

min-R(G ) ≤ O(n(d+1)dlog(d+1)e+1).

The upper and lower bounds for min-R(G ) are far apart.

Problem

Improve the upper and lower bounds on min-R(G ) for 3-regular graphs G .

Thank you.
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