On ordered Ramsey numbers of bounded-degree graphs

Martin Balko, Vít Jelínek, Pavel Valtr

Charles University in Prague, Czech Republic

June 9, 2016

Ramsey's theorem for graphs

For every graph G there is an integer N = N(G) such that every 2-coloring of the edges of K_N contains a monochromatic copy of G.

Ramsey's theorem for graphs

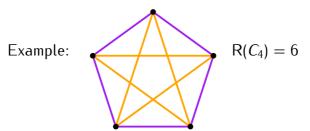
For every graph G there is an integer N = N(G) such that every 2-coloring of the edges of K_N contains a monochromatic copy of G.

• Ramsey number R(G) of G is the smallest such N.

Ramsey's theorem for graphs

For every graph G there is an integer N = N(G) such that every 2-coloring of the edges of K_N contains a monochromatic copy of G.

• Ramsey number R(G) of G is the smallest such N.



• An ordered graph G is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

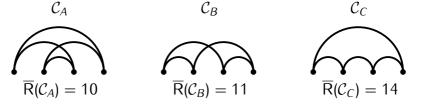
- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

• The ordered Ramsey number $\overline{R}(\mathcal{G})$ of an ordered graph \mathcal{G} is the least number N such that every 2-coloring of edges of \mathcal{K}_N contains a monochromatic copy of \mathcal{G} as an ordered subgraph.

- An ordered graph \mathcal{G} is a pair (G, \prec) where G is a graph and \prec is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

• The ordered Ramsey number $\overline{R}(\mathcal{G})$ of an ordered graph \mathcal{G} is the least number N such that every 2-coloring of edges of \mathcal{K}_N contains a monochromatic copy of \mathcal{G} as an ordered subgraph.



• We consider graphs with the maximum degree bounded by a constant.

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

$$R(G) \leq O(n)$$
.

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

$$R(G) \leq O(n)$$
.

Theorem (B., Cibulka, Král, Kynčl and Conlon, Fox, Lee, Sudakov, 2014)

There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log\log n}\right)}$$
.

- We consider graphs with the maximum degree bounded by a constant.
- There is a substantial difference between ordered and unordered case.

Theorem (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

$$R(G) \leq O(n)$$
.

Theorem (B., Cibulka, Král, Kynčl and Conlon, Fox, Lee, Sudakov, 2014)

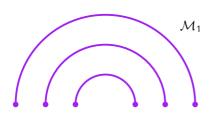
There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log\log n}\right)}.$$

Conlon et al. showed that this holds for almost every ordered matching.

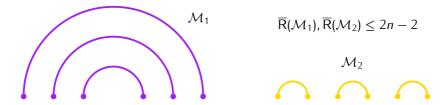
• There are *n*-vertex ordered matchings \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in n.

• There are *n*-vertex ordered matchings \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in n.



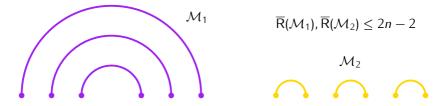
$$\overline{R}(\mathcal{M}_1)$$
, $\overline{R}(\mathcal{M}_2) \leq 2n - 2$

• There are *n*-vertex ordered matchings \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in n.



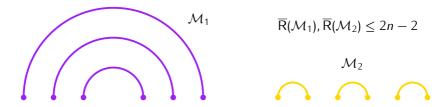
• Which orderings have asymptotically smallest ordered Ramsey numbers?

• There are *n*-vertex ordered matchings \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in n.



- Which orderings have asymptotically smallest ordered Ramsey numbers?
- When can we attain linear ordered Ramsey numbers?

• There are *n*-vertex ordered matchings \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in *n*.



- Which orderings have asymptotically smallest ordered Ramsey numbers?
- When can we attain linear ordered Ramsey numbers?

Problem (Conlon, Fox, Lee, Sudakov, 2014)

Do random 3-regular graphs have superlinear ordered Ramsey numbers for all orderings?

• We give a positive answer to the problem of Conlon et al.

- We give a positive answer to the problem of Conlon et al.
- min- $\overline{R}(G)$ is the minimum of $\overline{R}(G)$ over all orderings G of G.

- We give a positive answer to the problem of Conlon et al.
- min- $\overline{R}(G)$ is the minimum of $\overline{R}(G)$ over all orderings G of G.

Theorem

For every $d \ge 3$, almost every d-regular graph G on n vertices satisfies

$$\min \overline{R}(G) \ge \frac{n^{3/2 - 1/d}}{4 \log n \log \log n}.$$

- We give a positive answer to the problem of Conlon et al.
- min- $\overline{R}(G)$ is the minimum of $\overline{R}(G)$ over all orderings G of G.

Theorem

For every $d \ge 3$, almost every d-regular graph G on n vertices satisfies

$$\min \overline{R}(G) \ge \frac{n^{3/2 - 1/d}}{4 \log n \log \log n}.$$

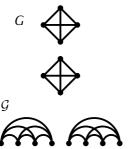
• For 3-regular graphs, we obtain min- $\overline{R}(G) \ge \frac{n^{7/6}}{4 \log n \log \log n}$.

• For $d \ge 3$, let G be a d-regular graph on n vertices.

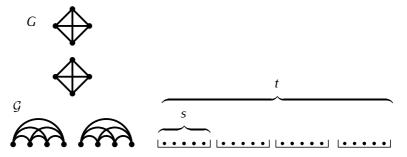
- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.

- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.

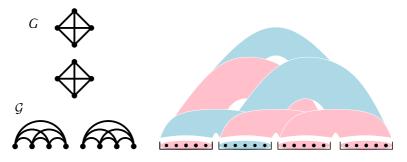
- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.



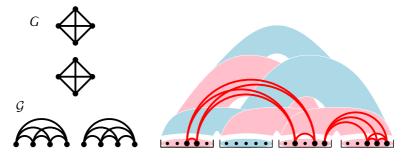
- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.



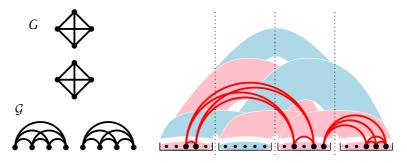
- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.



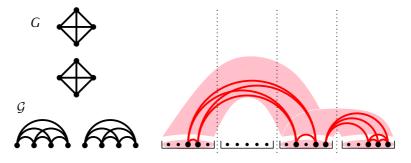
- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.



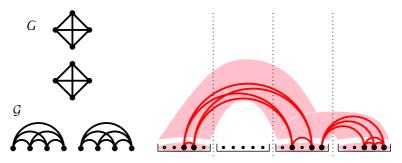
- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.



- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.



- For $d \ge 3$, let G be a d-regular graph on n vertices.
- Key lemma: Almost every such G satisfies the following: for every partition of V(G) into few sets X_1, \ldots, X_t , each of size at most s, there are many pairs (X_i, X_j) with an edge between them. Here, $t = n/(2 \log n \log \log n)$ and $s = n^{1/2-1/d}/2$.



 We use an estimate by Bender and Canfield and by Wormald for the number of d-regular graphs on n vertices.

• Each *n*-vertex 1-regular graph has an ordering \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in n.

- Each *n*-vertex 1-regular graph has an ordering \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in n.
- No longer true for d-regular graphs with $d \ge 3$.

- Each *n*-vertex 1-regular graph has an ordering \mathcal{M} with $\overline{\mathbb{R}}(\mathcal{M})$ linear in n.
- No longer true for d-regular graphs with $d \ge 3$.
- How about 2-regular graphs?

Theorem

$$\min \overline{R}(G) \leq O(n)$$
.

Theorem

Every graph G with n vertices and with maximum degree at most two satisfies

$$\min \overline{R}(G) \leq O(n)$$
.

• First, for every n, we find an ordering C_n of C_n with $\overline{\mathbb{R}}(C_n)$ linear in n.

Theorem

$$\min \overline{R}(G) \leq O(n)$$
.

- First, for every n, we find an ordering C_n of C_n with $\overline{\mathbb{R}}(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union \mathcal{G} of these ordered cycles with linear $\overline{R}(\mathcal{G})$.

Theorem

$$\min \overline{R}(G) \leq O(n)$$
.

- First, for every n, we find an ordering C_n of C_n with $\overline{\mathbb{R}}(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union \mathcal{G} of these ordered cycles with linear $\overline{R}(\mathcal{G})$.
- Placing cycles sequentially does not work.

Theorem

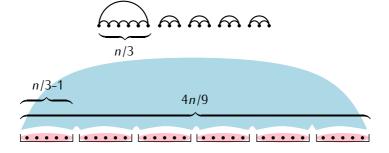
$$\min \overline{R}(G) \leq O(n)$$
.

- First, for every n, we find an ordering C_n of C_n with $R(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union \mathcal{G} of these ordered cycles with linear $\overline{R}(\mathcal{G})$.
- Placing cycles sequentially does not work.

Theorem

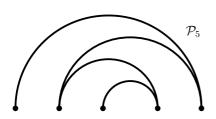
$$\min \overline{R}(G) \leq O(n)$$
.

- First, for every n, we find an ordering C_n of C_n with $\overline{\mathbb{R}}(C_n)$ linear in n.
- Second, we find an ordering of a disjoint union \mathcal{G} of these ordered cycles with linear $\overline{R}(\mathcal{G})$.
- Placing cycles sequentially does not work.

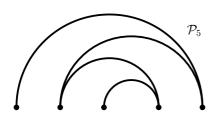


• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .

• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .

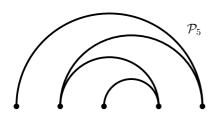


• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .



• B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .

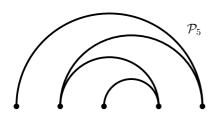


• B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .

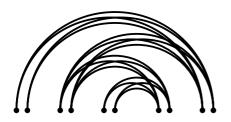


• B., Cibulka, Král, Kynčl showed $\overline{\mathbb{R}}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \geq n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .

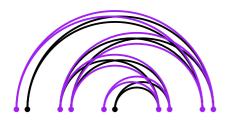


• B., Cibulka, Král, Kynčl showed $\overline{\mathbb{R}}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \ge n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .

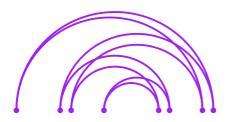


• B., Cibulka, Král, Kynčl showed $\overline{R}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \ge n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .



• B., Cibulka, Král, Kynčl showed $\overline{\mathbb{R}}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \ge n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.

• Linear ordering of cycles are based on alternating paths \mathcal{P}_n .

• B., Cibulka, Král, Kynčl showed $\overline{\mathbb{R}}(\mathcal{P}_n) \leq O(n)$.

Lemma

For every $\varepsilon > 0$ and every $n \in \mathbb{N}$, every ordered graph on $N \ge n/\varepsilon$ vertices with at least εN^2 edges contains \mathcal{P}_n as an ordered subgraph.



• Orderings of disjoint union of cycles are constructed as follows.

• For bipartite 2-regular graphs we obtain a stronger Turán-type result.

• Orderings of disjoint union of cycles are constructed as follows.

• For bipartite 2-regular graphs we obtain a stronger Turán-type result.

Theorem

For each $\varepsilon > 0$, there is $C(\varepsilon)$ such that, for every $n \in \mathbb{N}$, every bipartite graph G on n vertices with maximum degree 2 admits an ordering G of G that is contained in every ordered graph with $N \geq C(\varepsilon)n$ vertices and with at least εN^2 edges.

• Orderings of disjoint union of cycles are constructed as follows.

• For bipartite 2-regular graphs we obtain a stronger Turán-type result.

Theorem

For each $\varepsilon > 0$, there is $C(\varepsilon)$ such that, for every $n \in \mathbb{N}$, every bipartite graph G on n vertices with maximum degree 2 admits an ordering G of G that is contained in every ordered graph with $N \geq C(\varepsilon)n$ vertices and with at least εN^2 edges.

• No longer true if \mathcal{G} contains an odd cycle.

• A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

• A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

$$\mathsf{min}\text{-}\overline{\mathsf{R}}(\mathit{G}) \leq \mathit{O}(\mathit{n}^{(d+1)\lceil \log(d+1)\rceil + 1}).$$

• A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min \overline{R}(G) \leq O(n^{(d+1)\lceil \log(d+1)\rceil + 1}).$$

• The upper and lower bounds for min- $\overline{R}(G)$ are far apart.

• A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min \overline{R}(G) \leq O(n^{(d+1)\lceil \log(d+1)\rceil + 1}).$$

• The upper and lower bounds for min- $\overline{R}(G)$ are far apart.

Problem

Improve the upper and lower bounds on min- $\overline{R}(G)$ for 3-regular graphs G.

• A result of Conlon, Fox, Lee, Sudakov gives a polynomial upper bound.

Corollary

Every graph G with n vertices and with maximum degree d satisfies

$$\min \overline{R}(G) \leq O(n^{(d+1)\lceil \log(d+1)\rceil + 1}).$$

• The upper and lower bounds for min- $\overline{R}(G)$ are far apart.

Problem

Improve the upper and lower bounds on min- $\overline{R}(G)$ for 3-regular graphs G.

Thank you.