Induced Ramsey-type results and binary predicates for point sets

Martin Balko, Jan Kynčl, Stefan Langerman, Alexander Pilz

Charles University and Ben-Gurion University of the Negev

August 31, 2017

Introduction

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position.

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position. 0

\circ

0

0
-
0

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position. o

- Let $(X)_{p}$ be the set of all ordered p-tuples of distinct elements from X.

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position. 0

0	P		0	Q	
0	0			0	0
		0	0		0

- Let $(X)_{p}$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_{P}:(P)_{3} \rightarrow\{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_{3}$.

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position.

$$
\Delta_{P}(a, b, c)=+
$$

- Let $(X)_{p}$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_{P}:(P)_{3} \rightarrow\{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_{3}$.

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position.

- Let $(X)_{p}$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_{P}:(P)_{3} \rightarrow\{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_{3}$.

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position.

- Let $(X)_{p}$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_{P}:(P)_{3} \rightarrow\{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_{3}$.
- The sets P and Q have the same order type if there is a bijection $f: P \rightarrow Q$ such that every $T \in(P)_{3}$ has the same orientation as $f(T)$.

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position.

- Let $(X)_{p}$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_{P}:(P)_{3} \rightarrow\{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_{3}$.
- The sets P and Q have the same order type if there is a bijection $f: P \rightarrow Q$ such that every $T \in(P)_{3}$ has the same orientation as $f(T)$.

Introduction

- Let P and be Q finite sets of points in \mathbb{R}^{2} in general position.

The same order type.

- Let $(X)_{p}$ be the set of all ordered p-tuples of distinct elements from X.
- We use $\Delta_{P}:(P)_{3} \rightarrow\{-,+\}$ to denote the function that assigns an orientation to every triple from $(P)_{3}$.
- The sets P and Q have the same order type if there is a bijection $f: P \rightarrow Q$ such that every $T \in(P)_{3}$ has the same orientation as $f(T)$.

Ramsey point sets

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

$$
\begin{array}{cc}
\circ & Q \\
\stackrel{\circ}{ } & \circ \\
\bullet= & \\
k= & p
\end{array}
$$

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

$$
k=2=p
$$

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

$$
k=2=p
$$

- Which point sets are (k, p)-Ramsey?

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

$$
k=2=p
$$

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994-98):

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

$$
k=2=p
$$

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994-98):
- For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

$$
k=2=p
$$

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994-98):
- For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.
- If $k, p \geq 2$, then not all point sets are (k, p)-Ramsey.

Ramsey point sets

- For $k, p \in \mathbb{N}$, a point set Q is (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same order type as Q.

- Which point sets are (k, p)-Ramsey?
- Known results (Nešetřil and Valtr, 1994-98):
- For $k \in \mathbb{N}$, all point sets are $(k, 1)$-Ramsey.
- If $k, p \geq 2$, then not all point sets are (k, p)-Ramsey.
- For $k \in \mathbb{N}$, the non-convex 4-tuple is ($k, 2$)-Ramsey.

Ordered Ramsey point sets

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_{P}\left(p_{i}, p_{j}, p_{k}\right)=\Delta_{Q}\left(q_{i}, q_{j}, q_{k}\right)$ for all $1 \leq i<j<k \leq n$.

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_{P}\left(p_{i}, p_{j}, p_{k}\right)=\Delta_{Q}\left(q_{i}, q_{j}, q_{k}\right)$ for all $1 \leq i<j<k \leq n$.
- Distinguishing point sets by signatures is finer than by order types.

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_{P}\left(p_{i}, p_{j}, p_{k}\right)=\Delta_{Q}\left(q_{i}, q_{j}, q_{k}\right)$ for all $1 \leq i<j<k \leq n$.
- Distinguishing point sets by signatures is finer than by order types.

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_{P}\left(p_{i}, p_{j}, p_{k}\right)=\Delta_{Q}\left(q_{i}, q_{j}, q_{k}\right)$ for all $1 \leq i<j<k \leq n$.
- Distinguishing point sets by signatures is finer than by order types.

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_{P}\left(p_{i}, p_{j}, p_{k}\right)=\Delta_{Q}\left(q_{i}, q_{j}, q_{k}\right)$ for all $1 \leq i<j<k \leq n$.
- Distinguishing point sets by signatures is finer than by order types.

q_{2} •
- q_{4}

Same order type, distinct signatures.

- A point set Q is ordered (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same signature as Q.

Ordered Ramsey point sets

- We introduce a new family of ($k, 2$)-Ramsey point sets.
- To do so, we first introduce an ordered variant of (k, p)-Ramsey sets.
- Point sets $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ ordered by increasing x-coordinate have the same signature, if $\Delta_{P}\left(p_{i}, p_{j}, p_{k}\right)=\Delta_{Q}\left(q_{i}, q_{j}, q_{k}\right)$ for all $1 \leq i<j<k \leq n$.
- Distinguishing point sets by signatures is finer than by order types.

q_{2} •
- q_{4}

Same order type, distinct signatures.

- A point set Q is ordered (k, p)-Ramsey if there is a point set P such that for every k-coloring of $\binom{P}{p}$ there is a subset of P that has monochromatic p-tuples and has the same signature as Q.
- If a point set is ordered (k, p)-Ramsey, then it is (k, p)-Ramsey.

Decomposable sets are ordered Ramsey

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

$$
00^{0} 0
$$

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

Theorem 1
For every $k \in \mathbb{N}$, every decomposable set is ordered ($k, 2$)-Ramsey.

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered ($k, 2$)-Ramsey.

- For each $k \in \mathbb{N}$, all point sets are ordered ($k, 1$)-Ramsey.

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered ($k, 2$)-Ramsey.

- For each $k \in \mathbb{N}$, all point sets are ordered ($k, 1$)-Ramsey.
- For $k \geq 2$ and $p \geq 3,(k, p)$-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.

Decomposable sets are ordered Ramsey

- A point set P is decomposable if $|P|=1$ or if P admits the following partition into non-empty decomposable sets P_{1} and P_{2} :

Theorem 1

For every $k \in \mathbb{N}$, every decomposable set is ordered ($k, 2$)-Ramsey.

- For each $k \in \mathbb{N}$, all point sets are ordered ($k, 1$)-Ramsey.
- For $k \geq 2$ and $p \geq 3,(k, p)$-Ramsey sets are exactly sets in convex position and ordered (k, p)-Ramsey sets are exactly caps and cups.
- Theorem 1 has an application in the theory of combinatorial encodings of point sets.

Point-set predicates

Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.

Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma=\left\{\Gamma_{P}: P \in \mathcal{P}\right\}$, where $\Gamma_{P}:(P)_{t} \rightarrow Z$.

Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma=\left\{\Gamma_{P}: P \in \mathcal{P}\right\}$, where $\Gamma_{P}:(P)_{t} \rightarrow Z$.
- Example: ternary predicate $\Delta=\left\{\Delta_{P}: P \in \mathcal{P}\right\}$ with codomain $\{-,+\}$.

Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma=\left\{\Gamma_{P}: P \in \mathcal{P}\right\}$, where $\Gamma_{P}:(P)_{t} \rightarrow Z$.
- Example: ternary predicate $\Delta=\left\{\Delta_{P}: P \in \mathcal{P}\right\}$ with codomain $\{-,+\}$.
- We say that Γ encodes the order types if whenever there is a bijection $f: P \rightarrow Q$ such that $\Gamma_{P}\left(p_{1}, \ldots, p_{t}\right)=\Gamma_{Q}\left(f\left(p_{1}\right), \ldots, f\left(p_{t}\right)\right)$ for every $\left(p_{1}, \ldots, p_{t}\right) \in(P)_{t}$, then P and Q have the same order type via f.

Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma=\left\{\Gamma_{P}: P \in \mathcal{P}\right\}$, where $\Gamma_{P}:(P)_{t} \rightarrow Z$.
- Example: ternary predicate $\Delta=\left\{\Delta_{P}: P \in \mathcal{P}\right\}$ with codomain $\{-,+\}$.
- We say that Γ encodes the order types if whenever there is a bijection $f: P \rightarrow Q$ such that $\Gamma_{P}\left(p_{1}, \ldots, p_{t}\right)=\Gamma_{Q}\left(f\left(p_{1}\right), \ldots, f\left(p_{t}\right)\right)$ for every $\left(p_{1}, \ldots, p_{t}\right) \in(P)_{t}$, then P and Q have the same order type via f.
- For $n \in \mathbb{N}$, there are $2^{\Theta\left(n^{3}\right)}$ ternary functions $f:([n])_{3} \rightarrow\{-,+\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n.

Point-set predicates

- Let \mathcal{P} be the set of all finite point sets in the plane in general position.
- For $t \in \mathbb{N}$ and a finite set Z, a t-ary point-set predicate with codomain Z is a collection $\Gamma=\left\{\Gamma_{P}: P \in \mathcal{P}\right\}$, where $\Gamma_{P}:(P)_{t} \rightarrow Z$.
- Example: ternary predicate $\Delta=\left\{\Delta_{P}: P \in \mathcal{P}\right\}$ with codomain $\{-,+\}$.
- We say that Γ encodes the order types if whenever there is a bijection $f: P \rightarrow Q$ such that $\Gamma_{P}\left(p_{1}, \ldots, p_{t}\right)=\Gamma_{Q}\left(f\left(p_{1}\right), \ldots, f\left(p_{t}\right)\right)$ for every $\left(p_{1}, \ldots, p_{t}\right) \in(P)_{t}$, then P and Q have the same order type via f.
- For $n \in \mathbb{N}$, there are $2^{\Theta\left(n^{3}\right)}$ ternary functions $f:([n])_{3} \rightarrow\{-,+\}$, but only $2^{\Theta(n \log n)}$ order types of point sets of size n.
- Is the encoding by Δ effective? Is it possible to use a binary predicate?

Locally consistent predicates

Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).

Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.

Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?

Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ of P, having $\Gamma_{P}\left(a_{i}, a_{j}\right)=\Gamma_{P}\left(b_{i}, b_{j}\right)$ for every $(i, j) \in([3])_{2}$ implies $\Delta_{P}\left(a_{1}, a_{2}, a_{3}\right)=\Delta_{P}\left(b_{1}, b_{2}, b_{3}\right)$.

Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ of P, having $\Gamma_{P}\left(a_{i}, a_{j}\right)=\Gamma_{P}\left(b_{i}, b_{j}\right)$ for every $(i, j) \in([3])_{2}$ implies $\Delta_{P}\left(a_{1}, a_{2}, a_{3}\right)=\Delta_{P}\left(b_{1}, b_{2}, b_{3}\right)$.

Theorem 2

For every finite set Z, there is a point set $P=P(Z)$ such that no binary predicate with codomain Z is locally consistent on P.

Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ of P, having $\Gamma_{P}\left(a_{i}, a_{j}\right)=\Gamma_{P}\left(b_{i}, b_{j}\right)$ for every $(i, j) \in([3])_{2}$ implies $\Delta_{P}\left(a_{1}, a_{2}, a_{3}\right)=\Delta_{P}\left(b_{1}, b_{2}, b_{3}\right)$.

Theorem 2

For every finite set Z, there is a point set $P=P(Z)$ such that no binary predicate with codomain Z is locally consistent on P.

- The proof is based on Theorem 1.

Locally consistent predicates

- A binary predicate that encodes the order types exists. (Felsner, 1997).
- However, unlike Δ, this predicate does not behave locally.
- Is there a binary predicate that encodes order types and behaves locally?
- A binary predicate Γ is locally consistent on $P \in \mathcal{P}$ if, for any distinct subsets $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ of P, having $\Gamma_{P}\left(a_{i}, a_{j}\right)=\Gamma_{P}\left(b_{i}, b_{j}\right)$ for every $(i, j) \in([3])_{2}$ implies $\Delta_{P}\left(a_{1}, a_{2}, a_{3}\right)=\Delta_{P}\left(b_{1}, b_{2}, b_{3}\right)$.

Theorem 2

For every finite set Z, there is a point set $P=P(Z)$ such that no binary predicate with codomain Z is locally consistent on P.

- The proof is based on Theorem 1.

Encoding wheel sets

Encoding wheel sets

- What can we encode with locally consistent predicates?

Encoding wheel sets

- What can we encode with locally consistent predicates?
- Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Encoding wheel sets

- What can we encode with locally consistent predicates?
- Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Proposition 1

The order types of wheel sets can be encoded with a binary predicate Φ with codomain $\{-,+\}$ such that Φ is locally consistent on all wheel sets.

Encoding wheel sets

- What can we encode with locally consistent predicates?
- Codomains of size only 2 are already sufficient to encode exponentially many order types of point sets of size n for every $n \in \mathbb{N}$.

Proposition 1

The order types of wheel sets can be encoded with a binary predicate Φ with codomain $\{-,+\}$ such that Φ is locally consistent on all wheel sets.

Encoding small sets

Encoding small sets

- Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.

Encoding small sets

- Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.
- By Theorem $2, h(k)$ is finite for every $k \in \mathbb{N}$.

Encoding small sets

- Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.
- By Theorem $2, h(k)$ is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on $h(k)$.

Encoding small sets

- Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.
- By Theorem $2, h(k)$ is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on $h(k)$.

Proposition 2

We have $h(k) \geq c \cdot k^{3 / 2}$ for some constant $c>0$.

Encoding small sets

- Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.
- By Theorem 2, $h(k)$ is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on $h(k)$.

Proposition 2

We have $h(k) \geq c \cdot k^{3 / 2}$ for some constant $c>0$.

- The proof is based on Lovász's Local Lemma and the fact that there are only $2^{O(k \log k)}$ order types of point sets of size k.

Encoding small sets

- Let $h(k)$ be the largest integer such that there is a binary predicate with codomain of size k that is locally consistent on all point sets of size $h(k)$ and that encodes their order types.
- By Theorem $2, h(k)$ is finite for every $k \in \mathbb{N}$.
- We show a superlinear lower bound on $h(k)$.

Proposition 2

We have $h(k) \geq c \cdot k^{3 / 2}$ for some constant $c>0$.

- The proof is based on Lovász's Local Lemma and the fact that there are only $2^{O(k \log k)}$ order types of point sets of size k.

Question 1

What is the growth rate of $h(k)$?

An open problem about ordered Ramsey sets

An open problem about ordered Ramsey sets

- Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered ($k, 2$)-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.

An open problem about ordered Ramsey sets

- Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered $(k, 2)$-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.

An open problem about ordered Ramsey sets

- Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered ($k, 2$)-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For $p=1$ and $p \geq 3$, analogous results hold for generalized point sets. However, the case $p=2$ is wide open.

An open problem about ordered Ramsey sets

- Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered $(k, 2)$-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For $p=1$ and $p \geq 3$, analogous results hold for generalized point sets. However, the case $p=2$ is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

An open problem about ordered Ramsey sets

- Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered $(k, 2)$-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For $p=1$ and $p \geq 3$, analogous results hold for generalized point sets. However, the case $p=2$ is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.

An open problem about ordered Ramsey sets

- Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered $(k, 2)$-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For $p=1$ and $p \geq 3$, analogous results hold for generalized point sets. However, the case $p=2$ is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.
- All ordered 3-uniform hypergraphs are ordered (2, 2)-Ramsey (Nešetřil and Rödl, 1983).

An open problem about ordered Ramsey sets

- Recall that all point sets are ordered $(k, 1)$-Ramsey, but not ordered $(k, 2)$-Ramsey. Ordered (k, p)-Ramsey sets for $p \geq 3$ are caps and cups.
- Signatures can be defined also for generalized point sets, where lines are replaced by pseudolines. We can thus introduce ordered (k, p)-Ramsey generalized point sets.
- For $p=1$ and $p \geq 3$, analogous results hold for generalized point sets. However, the case $p=2$ is wide open.

Question 2

Is there a generalized point set that is not ordered (2,2)-Ramsey?

- Generalized point sets correspond to ordered 3-uniform hypergraphs with 8 forbidden induced sub-hypergraphs. However, known structural results do not seem to apply here.
- All ordered 3-uniform hypergraphs are ordered (2, 2)-Ramsey (Nešetřil and Rödl, 1983).

Thank you.

