Holes and islands in random point sets

Martin Balko, Manfred Scheucher, and Pavel Valtr

Faculty of Mathematics and Physics, Charles University

Preliminaries

Preliminaries

Theorem (Erdős, Szekeres, 1935)
For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

- A k-hole in a point set S is a k-tuple of points from S in convex position with no points of S in the interior of their convex hull.

Preliminaries

Theorem (Erdős, Szekeres, 1935)
For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

- A k-hole in a point set S is a k-tuple of points from S in convex position with no points of S in the interior of their convex hull.

Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each $k \in \mathbb{N}$, every sufficiently large point set in general position (no 3 points are collinear) in the plane contains k points in convex position.

- A k-hole in a point set S is a k-tuple of points from S in convex position with no points of S in the interior of their convex hull.
- Every set of 3 points contains a 3 -hole. Also, 5 points $\rightarrow 4$-hole and 10 points $\rightarrow 5$-hole (Harborth, 1978).

Sets with no large holes

Sets with no large holes

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?

Sets with no large holes

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

Sets with no large holes

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

Sets with no large holes

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

Sets with no large holes

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

Sets with no large holes

- Erdős, 1978: For every $k \in \mathbb{N}$, does every large enough point set in general position contain a k-hole?
- No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

- Every sufficiently large point set in general position contains a 6-hole (Gerken, 2008 and Nicolás, 2007).

Counting k-holes

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
- $h_{3}(n)$ and $h_{4}(n)$ are in $\Theta\left(n^{2}\right)$.

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
- $h_{3}(n)$ and $h_{4}(n)$ are in $\Theta\left(n^{2}\right)$.
- $h_{5}(n)$ is in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$.

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
- $h_{3}(n)$ and $h_{4}(n)$ are in $\Theta\left(n^{2}\right)$.
- $h_{5}(n)$ is in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$.
- $h_{6}(n)$ is in $\Omega(n)$ and $O\left(n^{2}\right)$.

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
- $h_{3}(n)$ and $h_{4}(n)$ are in $\Theta\left(n^{2}\right)$.
- $h_{5}(n)$ is in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$.
- $h_{6}(n)$ is in $\Omega(n)$ and $O\left(n^{2}\right)$.
- $h_{k}(n)=0$ for every $k \geq 7$ (Horton, 1983).

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
- $h_{3}(n)$ and $h_{4}(n)$ are in $\Theta\left(n^{2}\right)$.
- $h_{5}(n)$ is in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$.
- $h_{6}(n)$ is in $\Omega(n)$ and $O\left(n^{2}\right)$.
- $h_{k}(n)=0$ for every $k \geq 7$ (Horton, 1983).
- Holes were also considered in higher dimensions.

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
- $h_{3}(n)$ and $h_{4}(n)$ are in $\Theta\left(n^{2}\right)$.
- $h_{5}(n)$ is in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$.
- $h_{6}(n)$ is in $\Omega(n)$ and $O\left(n^{2}\right)$.
- $h_{k}(n)=0$ for every $k \geq 7$ (Horton, 1983).
- Holes were also considered in higher dimensions.
- There are d-dimensional Horton sets not containing k-holes for sufficiently large $k=k(d)$ (Valtr, 1992).

Counting k-holes

- Every sufficiently large set of points in general position contains a k-hole for $k \in\{3,4,5,6\}$.
- How many k-holes do we always have?
- Let $h_{k}(n)$ be the minimum number of k-holes among all sets of n points in the plane in general position.
- The following bounds are known:
- $h_{3}(n)$ and $h_{4}(n)$ are in $\Theta\left(n^{2}\right)$.
- $h_{5}(n)$ is in $\Omega\left(n \log ^{4 / 5} n\right)$ and $O\left(n^{2}\right)$.
- $h_{6}(n)$ is in $\Omega(n)$ and $O\left(n^{2}\right)$.
- $h_{k}(n)=0$ for every $k \geq 7$ (Horton, 1983).
- Holes were also considered in higher dimensions.
- There are d-dimensional Horton sets not containing k-holes for sufficiently large $k=k(d)$ (Valtr, 1992).
- The minimum number of $(d+1)$-holes (empty simplices) in an n-point set in \mathbb{R}^{d} is in $\Theta\left(n^{d}\right)$ (Bárány, Füredi, 1987).

Random point sets

Random point sets

- Random point sets give the upper bound $O\left(n^{d}\right)$ on the number of empty simplices.

Random point sets

- Random point sets give the upper bound $O\left(n^{d}\right)$ on the number of empty simplices.
- Let k be a positive integer and let $K \subseteq \mathbb{R}^{d}$ be a convex body of volume $\lambda_{d}(K)=1$.

Random point sets

- Random point sets give the upper bound $O\left(n^{d}\right)$ on the number of empty simplices.
- Let k be a positive integer and let $K \subseteq \mathbb{R}^{d}$ be a convex body of volume $\lambda_{d}(K)=1$.
- Let $E H_{d, k}^{K}(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.

Random point sets

- Random point sets give the upper bound $O\left(n^{d}\right)$ on the number of empty simplices.
- Let k be a positive integer and let $K \subseteq \mathbb{R}^{d}$ be a convex body of volume $\lambda_{d}(K)=1$.
- Let $E H_{d, k}^{K}(n)$ be the expected number of k-holes in sets of n points chosen independently and uniformly at random from K.
- Bárány and Füredi showed that

$$
E H_{d, d+1}^{K}(n) \leq(2 d)^{2 d^{2}} \cdot\binom{n}{d} .
$$

Our results I

Our results I

- We extend previous bounds to larger holes and even to islands.

Our results I

- We extend previous bounds to larger holes and even to islands.
- An island in a point set P is a subset Q of P with $P \cap \operatorname{conv}(Q)=Q$.

Our results I

- We extend previous bounds to larger holes and even to islands.
- An island in a point set P is a subset Q of P with $P \cap \operatorname{conv}(Q)=Q$.

Our results I

- We extend previous bounds to larger holes and even to islands.
- An island in a point set P is a subset Q of P with $P \cap \operatorname{conv}(Q)=Q$.

Our results I

- We extend previous bounds to larger holes and even to islands.
- An island in a point set P is a subset Q of P with $P \cap \operatorname{conv}(Q)=Q$.

Theorem 1

Let $d \geq 2$ and $k \geq d+1$ be integers and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. If S is a set of $n \geq k$ points chosen uniformly and independently at random from K, then the expected number of k-islands in S is at most
$2^{d-1} \cdot\left(2 d^{2 d-1}\binom{k}{\lfloor d / 2\rfloor}\right)^{k-d-1} \cdot(k-d) \cdot \frac{n(n-1) \cdots(n-k+2)}{(n-k+1)^{k-d-1}} \in O\left(n^{d}\right)$.

Our results II

Our results II

- The bound from Theorem 1 is asymptotically optimal, but the leading constant can be improved for k-holes.

Our results II

- The bound from Theorem 1 is asymptotically optimal, but the leading constant can be improved for k-holes.

Theorem 2

Let $d \geq 2$ and $k \geq d+1$ be integers and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. If S is a set of $n \geq k$ points chosen uniformly and independently at random from K, then the expected number $E H_{d, k}^{K}(n)$ of k-holes is at most

$$
2^{d-1} \cdot\left(2 d^{2 d-1}\binom{k}{\lfloor d / 2\rfloor}\right)^{k-d-1} \cdot \frac{n(n-1) \cdots(n-k+2)}{(k-d-1)!\cdot(n-k+1)^{k-d-1}} \in O\left(n^{d}\right) .
$$

Our results II

- The bound from Theorem 1 is asymptotically optimal, but the leading constant can be improved for k-holes.

Theorem 2

Let $d \geq 2$ and $k \geq d+1$ be integers and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. If S is a set of $n \geq k$ points chosen uniformly and independently at random from K, then the expected number $E H_{d, k}^{K}(n)$ of k-holes is at most

$$
2^{d-1} \cdot\left(2 d^{2 d-1}\binom{k}{\lfloor d / 2\rfloor}\right)^{k-d-1} \cdot \frac{n(n-1) \cdots(n-k+2)}{(k-d-1)!\cdot(n-k+1)^{k-d-1}} \in O\left(n^{d}\right) .
$$

- Theorem 2 even gives better bounds then earlier results.

Our results II

- The bound from Theorem 1 is asymptotically optimal, but the leading constant can be improved for k-holes.

Theorem 2

Let $d \geq 2$ and $k \geq d+1$ be integers and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. If S is a set of $n \geq k$ points chosen uniformly and independently at random from K, then the expected number $E H_{d, k}^{K}(n)$ of k-holes is at most

$$
2^{d-1} \cdot\left(2 d^{2 d-1}\binom{k}{\lfloor d / 2\rfloor}\right)^{k-d-1} \cdot \frac{n(n-1) \cdots(n-k+2)}{(k-d-1)!\cdot(n-k+1)^{k-d-1}} \in O\left(n^{d}\right) .
$$

- Theorem 2 even gives better bounds then earlier results.
- For empty simplices in \mathbb{R}^{d} Theorem 2 gives the estimate

$$
E H_{d, d+1}^{K}(n) \leq 2^{d-1} \cdot d!\cdot\binom{n}{d}
$$

Our results II

- The bound from Theorem 1 is asymptotically optimal, but the leading constant can be improved for k-holes.

Theorem 2

Let $d \geq 2$ and $k \geq d+1$ be integers and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. If S is a set of $n \geq k$ points chosen uniformly and independently at random from K, then the expected number $E H_{d, k}^{K}(n)$ of k-holes is at most

$$
2^{d-1} \cdot\left(2 d^{2 d-1}\binom{k}{\lfloor d / 2\rfloor}\right)^{k-d-1} \cdot \frac{n(n-1) \cdots(n-k+2)}{(k-d-1)!\cdot(n-k+1)^{k-d-1}} \in O\left(n^{d}\right) .
$$

- Theorem 2 even gives better bounds then earlier results.
- For empty simplices in \mathbb{R}^{d} Theorem 2 gives the estimate

$$
E H_{d, d+1}^{K}(n) \leq 2^{d-1} \cdot d!\cdot\binom{n}{d}
$$

- For 4-holes in the plane, we get $E H_{2,4}^{K}(n) \leq 12 n^{2}+o\left(n^{2}\right)$.

Our results III

Our results III

- We cannot have the bound $O\left(n^{d}\right)$ for k-islands if k is not fixed.

Our results III

- We cannot have the bound $O\left(n^{d}\right)$ for k-islands if k is not fixed.

Theorem 3

Let $d \geq 2$ be an integer and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. Then, for every set S of n points chosen uniformly and independently at random from K, the expected number of islands in S is in $2^{\Theta\left(n^{(d-1) /(d+1)}\right) \text {. }}$

Our results III

- We cannot have the bound $O\left(n^{d}\right)$ for k-islands if k is not fixed.

Theorem 3

Let $d \geq 2$ be an integer and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. Then, for every set S of n points chosen uniformly and independently at random from K, the expected number of islands in S is in $2^{\Theta\left(n^{(d-1) /(d+1)}\right) \text {. }}$

- Theorem 1 is the first nontrivial bound for k-islands in \mathbb{R}^{d} for $d>2$.

Our results III

- We cannot have the bound $O\left(n^{d}\right)$ for k-islands if k is not fixed.

Theorem 3

Let $d \geq 2$ be an integer and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. Then, for every set S of n points chosen uniformly and independently at random from K, the expected number of islands in S is in $2^{\Theta\left(n^{(d-1) /(d+1)}\right) \text {. }}$

- Theorem 1 is the first nontrivial bound for k-islands in \mathbb{R}^{d} for $d>2$.
- In the plane, the $O\left(n^{2}\right)$ bound can be achieved by Horton sets (Fabila-Monroy and Huemer, 2012).

Our results III

- We cannot have the bound $O\left(n^{d}\right)$ for k-islands if k is not fixed.

Theorem 3

Let $d \geq 2$ be an integer and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. Then, for every set S of n points chosen uniformly and independently at random from K, the expected number of islands in S is in $2^{\Theta\left(n^{(d-1) /(d+1)}\right)}$.

- Theorem 1 is the first nontrivial bound for k-islands in \mathbb{R}^{d} for $d>2$.
- In the plane, the $O\left(n^{2}\right)$ bound can be achieved by Horton sets (Fabila-Monroy and Huemer, 2012).
- d-dimensional Horton sets with $d>2$ do not give the $O\left(n^{d}\right)$ bound.

Our results III

- We cannot have the bound $O\left(n^{d}\right)$ for k-islands if k is not fixed.

Theorem 3

Let $d \geq 2$ be an integer and let K be a convex body in \mathbb{R}^{d} with $\lambda_{d}(K)=1$. Then, for every set S of n points chosen uniformly and independently at random from K, the expected number of islands in S is in $2^{\Theta\left(n^{(d-1) /(d+1)}\right) \text {. }}$

- Theorem 1 is the first nontrivial bound for k-islands in \mathbb{R}^{d} for $d>2$.
- In the plane, the $O\left(n^{2}\right)$ bound can be achieved by Horton sets (Fabila-Monroy and Huemer, 2012).
- d-dimensional Horton sets with $d>2$ do not give the $O\left(n^{d}\right)$ bound.

Theorem 4

Let $d \geq 2$ and k be fixed positive integers. Then every d-dimensional Horton set H with n points contains at least $\Omega\left(n^{\min \left\{2^{d-1}, k\right\}}\right) k$-islands in H. If $k \leq 3 \cdot 2^{d-1}$, then H even contains at least $\Omega\left(n^{\min \left\{2^{d-1}, k\right\}}\right) k$-holes in H.

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

- We want to prove the bound $O\left(n^{2}\right)$ on the number of k-islands in sets of n points in the plane.

Sketch of the proof of Theorem 1: the plane case

- We want to prove the bound $O\left(n^{2}\right)$ on the number of k-islands in sets of n points in the plane.
- We assume that the drawn points are in a canonical order p_{1}, \ldots, p_{k} : $\Delta=\operatorname{conv}\left(\left\{p_{1} p_{2} p_{3}\right\}\right)$ is the triangle of the largest volume, $p_{1} p_{2}$ is its longest edge, points outside of Δ have increasing distances to the convex hull of the previously placed points and the points inside Δ are uniquely ordered.

Sketch of the proof of Theorem 1: the plane case

- We want to prove the bound $O\left(n^{2}\right)$ on the number of k-islands in sets of n points in the plane.
- We assume that the drawn points are in a canonical order p_{1}, \ldots, p_{k} : $\Delta=\operatorname{conv}\left(\left\{p_{1} p_{2} p_{3}\right\}\right)$ is the triangle of the largest volume, $p_{1} p_{2}$ is its longest edge, points outside of Δ have increasing distances to the convex hull of the previously placed points and the points inside Δ are uniquely ordered.
- We draw the points in the canonical order and estimate the probability in every step.

Sketch of the proof of Theorem 1: the plane case

- We want to prove the bound $O\left(n^{2}\right)$ on the number of k-islands in sets of n points in the plane.
- We assume that the drawn points are in a canonical order p_{1}, \ldots, p_{k} : $\Delta=\operatorname{conv}\left(\left\{p_{1} p_{2} p_{3}\right\}\right)$ is the triangle of the largest volume, $p_{1} p_{2}$ is its longest edge, points outside of Δ have increasing distances to the convex hull of the previously placed points and the points inside Δ are uniquely ordered.
- We draw the points in the canonical order and estimate the probability in every step.
- We start by estimating the probability that the vertices p_{1}, p_{2}, p_{3} of Δ with a points p_{4}, \ldots, p_{3+a} inside Δ form an island in S.

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

- The probability that the drawn points in Δ are an island in S is at most

$$
\int_{-2 /\left|I_{0}\right|}^{2 /\left|l_{0}\right|} \frac{\left|I_{n} \cap K\right|}{a!\cdot(k-a-3)!} \cdot\left(\frac{\left|l_{0}\right| \cdot|h|}{2}\right)^{a} \cdot\left(1-\frac{\left|\left.\right|_{0}\right| \cdot|h|}{2}\right)^{n-a-3} \mathrm{~d} h .
$$

Sketch of the proof of Theorem 1: the plane case

- The probability that the drawn points in Δ are an island in S is at most

$$
\frac{4}{(n-k+1)^{a+1}} .
$$

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

- For $i=a+3, \ldots, k$, let $E_{a, i}$ be the event that $\left\{p_{1}, \ldots, p_{i}\right\}$ is an island in S. We estimate the probability $\operatorname{Pr}\left[E_{a, i} \mid E_{a, i-1}\right]$.

Sketch of the proof of Theorem 1: the plane case

Sketch of the proof of Theorem 1: the plane case

- Now, we just put the estimates together.

Sketch of the proof of Theorem 1: the plane case

- Now, we just put the estimates together.
- Since,

$$
E_{a, a+3} \supseteq E_{a, a+4} \supseteq \cdots \supseteq E_{a, k}
$$

the probability that k points form an island in the canonical order is

Sketch of the proof of Theorem 1: the plane case

- Now, we just put the estimates together.
- Since,

$$
E_{a, a+3} \supseteq E_{a, a+4} \supseteq \cdots \supseteq E_{a, k}
$$

the probability that k points form an island in the canonical order is

$$
P \leq \sum_{a=0}^{k-3} \frac{4}{(n-k+1)^{a+1}} \cdot \prod_{i=a+4}^{k} \frac{16 k}{n-i+1}
$$

Sketch of the proof of Theorem 1: the plane case

- Now, we just put the estimates together.
- Since,

$$
E_{a, a+3} \supseteq E_{a, a+4} \supseteq \cdots \supseteq E_{a, k}
$$

the probability that k points form an island in the canonical order is

$$
\begin{aligned}
P & \leq \sum_{a=0}^{k-3} \frac{4}{(n-k+1)^{a+1}} \cdot \prod_{i=a+4}^{k} \frac{16 k}{n-i+1} \\
& \leq(16 k)^{k-3} \cdot(k-2) \cdot \frac{4}{(n-k+1)^{k-2}} .
\end{aligned}
$$

Sketch of the proof of Theorem 1: the plane case

- Now, we just put the estimates together.
- Since,

$$
E_{a, a+3} \supseteq E_{a, a+4} \supseteq \cdots \supseteq E_{a, k}
$$

the probability that k points form an island in the canonical order is

$$
\begin{aligned}
P & \leq \sum_{a=0}^{k-3} \frac{4}{(n-k+1)^{a+1}} \cdot \prod_{i=a+4}^{k} \frac{16 k}{n-i+1} \\
& \leq(16 k)^{k-3} \cdot(k-2) \cdot \frac{4}{(n-k+1)^{k-2}} .
\end{aligned}
$$

- The expected number of k-islands in S is then at most

$$
n(n-1) \cdots(n-k+1) \cdot P / 2 .
$$

Sketch of the proof of Theorem 1: higher dimensions

Sketch of the proof of Theorem 1: higher dimensions

- Some steps become a bit more involved, but we use the same ideas.

Sketch of the proof of Theorem 1: higher dimensions

- Some steps become a bit more involved, but we use the same ideas.

Future work

Future work

- How good is the estimate?

Future work

- How good is the estimate?
- We believe that the leading constant is optimal for empty triangles in the plane.

Future work

- How good is the estimate?
- We believe that the leading constant is optimal for empty triangles in the plane.
- We plan to improve the bounds for 4-holes.

Future work

- How good is the estimate?
- We believe that the leading constant is optimal for empty triangles in the plane.
- We plan to improve the bounds for 4-holes.
- Is there a better lower/upper bound for $(d+2)$-holes?

Future work

- How good is the estimate?
- We believe that the leading constant is optimal for empty triangles in the plane.
- We plan to improve the bounds for 4-holes.
- Is there a better lower/upper bound for $(d+2)$-holes?

Thank you for your attention.

