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Obstacle numbers

In a drawing of a graph, vertices are points in R2 and edges are line segments.

An obstacle is a simple polygon in the plane.

The obstacle number obs(G ) of a graph G is the minimum number of
obstacles in a drawing of G where two vertices are connected by an edge iff
the corresponding line segment avoids all the obstacles.
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Previous results

Let obs(n) be the maxG obs(G ) over all n-vertex graphs G .

Is obs(n) ≤ O(n)? (Alpert, Koch, Laison, 2010)

Lower bounds:

obs(n) ≥ Ω(n/ log2 n) (Mukkamala, Pach, Sarıöz, 2010).
obs(n) ≥ Ω(n/ log n) (Mukkamala, Pach, Pálvölgyi, 2011).
obs(n) ≥ Ω(n/(log log n)2) (Dujmović, Morin, 2013).

Only the trivial upper bound obs(n) ≤
(n

2

)
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Our bounds

Conjecture (Mukkamala, Pach, Pálvölgyi, 2011)

The parameter obs(n) is around n2.

Theorem

For every positive integer n, we have

obs(n) ≤ ndlog ne − n + 1.

We can answer the question of Alpert et al. provided χ(G ) is bounded.

Theorem (in the journal version)

For every positive integer n and every n-vertex graph G , we have

obs(G ) ≤ (n − 1)(dlog ke+ 1),

where k := min{χ(G ), χ(G )}.

The bounds apply even if the obstacles are required to be convex.
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Dilated drawings

Key observation

(a) If d1 < · · · < dn−1, then all levels of a drawing D of Kn,n form caps.

(b) If D is ε-dilated, that is, we also have dn−1 < (1 + ε)d1, and ε > 0 is small,
then all edges of every cap are incident to the same face of D.
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Application I: Obstacle numbers of bipartite graphs

Proposition

For all m, n ∈ N and every bipartite graph G ⊆ Km,n, we have

obs(G ), obs(G ) ≤ m + n − 1.
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Application I: Obstacle numbers of general graphs

For a general graph G , we use divide-and-conquer approach and iterate
O(log |V (G )|) times.
We use a variant of the Horton set as the vertex set in the drawing.
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Application II: Number of graphs with low obstacle number

Let g(h, n) be the number of (labeled) n-vertex graphs G with obs(G ) ≤ h.

Upper bounds:

g(h, n) ≤ 2o(n2) (Pach, Sarıöz, 2011).

g(h, n) ≤ 2O(hn log2 n) (Mukkamala, Pach, Sarıöz, 2010).

Better upper bound on g(h, n) gives better lower bound on obs(n).

In 2013, Dujmović and Morin conjectured g(h, n) ≤ 2f (n)·o(h) where
f (n) ≤ O(n log2 n).

Theorem

For all n, h ∈ N with h < n, we have

g(h, n) ≥ 2Ω(hn).
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Application III: Complexity of faces in arrangements of segments

Question (Arkin et al., 1995)

What is the complexity of M faces in an arrangement of line segments with n
endpoints?

Upper bound: O(min{nM log n, n4/3M2/3 + n2 logM})
(Aronov et al., 1992, and Arkin et al., 1995)

Theorem

Lower bound: Ω(min{nM, n4/3M2/3}).

Tight for M ≥ n log3/2 n.
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Work in progress: Point-line incidences

Theorem (Szemerédi, Trotter, 1983)

The number of incidences between M points and N lines is at most

O(M2/3N2/3 + M + N).

Best upper bound is 2.44 ·M2/3N2/3 + M + N (Ackerman, 2014).

Lower bounds:

0.42 ·M2/3N2/3 + M + N (Erdős, 1946, Edelsbrunner, Welzl, 1986)
0.63 ·M2/3N2/3 + M + N (Elekes, 2002)

Theorem

The number of incidences between M points and N lines is at least

1.11 ·M2/3N2/3 + M + N.

Thank you.
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