Recent Progress on Hill's Conjecture

Martin Balko, Radoslav Fulek and Jan Kynčl

Charles University in Prague, Czech Republic

August 3, 2014

Preliminaries - Drawings

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices Infinitely many points in common

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices Infinitely many points in common

Edges touching

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices Infinitely many points in common

Edges touching

Multiple crossings

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices

Edges touching

Multiple crossings

- A drawing is simple if every two edges have at most one point in common.

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices Infinitely many points in common

Edges touching

Multiple crossings

- A drawing is simple if every two edges have at most one point in common.

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices Infinitely many points in common

Edges touching

Multiple crossings

- A drawing is simple if every two edges have at most one point in common.

- In a semisimple drawing independent edges may cross more than once.

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices Infinitely many points in common

Edges touching

Multiple crossings

- A drawing is simple if every two edges have at most one point in common.

or

- In a semisimple drawing independent edges may cross more than once.

Preliminaries - Drawings

- Drawing of a graph G : vertices $=$ distinct points in \mathbb{R}^{2}, edges $=$ simple continuous arcs.
- Forbidden:

Passing through vertices Infinitely many points in common

Edges touching

Multiple crossings

- A drawing is simple if every two edges have at most one point in common.

or

- In a semisimple drawing independent edges may cross more than once.
- A drawing is called x-monotone if edges are x-monotone curves.

Preliminaries - Crossings

Preliminaries - Crossings

- A crossing in a drawing D of G is a common interior point of two edges.

Preliminaries - Crossings

- A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number $\operatorname{cr}(G)$ of G is the minimum number of $\operatorname{crossings} \operatorname{cr}(D)$ in D taken over all drawings D of G.

Preliminaries - Crossings

- A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number $\operatorname{cr}(G)$ of G is the minimum number of $\operatorname{crossings~} \operatorname{cr}(D)$ in D taken over all drawings D of G.

Observation

All drawings with minimum number of crossings are simple.

Preliminaries - Crossings

- A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number $\operatorname{cr}(G)$ of G is the minimum number of $\operatorname{crossings} \operatorname{cr}(D)$ in D taken over all drawings D of G.

Observation

All drawings with minimum number of crossings are simple.

Preliminaries - Crossings

- A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number $\operatorname{cr}(G)$ of G is the minimum number of $\operatorname{crossings} \operatorname{cr}(D)$ in D taken over all drawings D of G.

Observation

All drawings with minimum number of crossings are simple.

- The monotone crossing number mon- $\operatorname{cr}(G)$ of G is the minimum number of crossings $\operatorname{cr}(D)$ in D taken over all x-monotone drawings D of G.

Crossing Number of K_{n}

Crossing Number of K_{n}
Conjecture (Hill, 1958)
We have $\operatorname{cr}\left(K_{n}\right)=Z(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$ for every $n \in \mathbb{N}$.

Crossing Number of K_{n}

Conjecture (Hill, 1958)

We have $\operatorname{cr}\left(K_{n}\right)=Z(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.

Crossing Number of K_{n}

Conjecture (Hill, 1958)

We have $\operatorname{cr}\left(K_{n}\right)=Z(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $\operatorname{cr}\left(K_{n}\right) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).

Crossing Number of K_{n}

Conjecture (Hill, 1958)

We have $\operatorname{cr}\left(K_{n}\right)=Z(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $\operatorname{cr}\left(K_{n}\right) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).
- Hill's optimal drawing of K_{10} :

Crossing Number of K_{n}

Conjecture (Hill, 1958)

We have $\operatorname{cr}\left(K_{n}\right)=Z(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $\operatorname{cr}\left(K_{n}\right) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).
- Hill's optimal drawing of K_{10} :
- Optimal 2-page drawing of K_{10} :

Crossing Number of K_{n}

Conjecture (Hill, 1958)

We have $\operatorname{cr}\left(K_{n}\right)=Z(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $\operatorname{cr}\left(K_{n}\right) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).
- Hill's optimal drawing of K_{10} :
- Optimal 2-page drawing of K_{10} :

- A drawing is 2-page if the vertices are placed on a line ℓ and each edge is fully contained in a halfspace determined by ℓ.

Main Result

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every $n \in \mathbb{N}$ we have mon-cr $\left(K_{n}\right)=Z(n)$.

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every $n \in \mathbb{N}$ we have mon-cr $\left(K_{n}\right)=Z(n)$.

- Proven independently by (Ábrego et al., 2013) using the same techniques.

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every $n \in \mathbb{N}$ we have mon-cr $\left(K_{n}\right)=Z(n)$.

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every $n \in \mathbb{N}$ we have mon-cr $\left(K_{n}\right)=Z(n)$.

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
- s-shellable drawings, $s \geq n / 2$ (Ábrego et al., 2013),

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every $n \in \mathbb{N}$ we have mon-cr $\left(K_{n}\right)=Z(n)$.

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
- s-shellable drawings, $s \geq n / 2$ (Ábrego et al., 2013),
- x-monotone weakly semisimple odd crossing number,

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every $n \in \mathbb{N}$ we have mon-cr $\left(K_{n}\right)=Z(n)$.

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
- s-shellable drawings, $s \geq n / 2$ (Ábrego et al., 2013),
- x-monotone weakly semisimple odd crossing number,
- weakly semisimple s-shellable drawings.

Main Result

- Proving the lower bound $=$ hard part of Hill's conjecture.
- Best lower bound: $\operatorname{cr}\left(K_{n}\right) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every $n \in \mathbb{N}$ we have $\operatorname{mon-cr}\left(K_{n}\right)=Z(n)$.

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
- s-shellable drawings, $s \geq n / 2$ (Ábrego et al., 2013),
- x-monotone weakly semisimple odd crossing number,
- weakly semisimple s-shellable drawings.
- Since 2-page drawings are x-monotone, we have mon-cr $\left(K_{n}\right) \leq Z(n)$.

Sketch of the Proof: Double Counting

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

w is to the left of $u v$

w is to the right of $u v$
- A k-edge is an edge that has exactly k vertices on the same side.

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

w is to the left of $u v$

w is to the right of $u v$
- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_{k}(D)$ denote the number of k-edges in D.

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

w is to the left of $u v$

w is to the right of $u v$
- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_{k}(D)$ denote the number of k-edges in D.
- There are only three simple drawings of K_{4} up to homeomorphism.

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

w is to the left of $u v$

w is to the right of $u v$
- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_{k}(D)$ denote the number of k-edges in D.
- There are only three simple drawings of K_{4} up to homeomorphism.

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

w is to the left of $u v$

w is to the right of $u v$
- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_{k}(D)$ denote the number of k-edges in D.
- There are only three simple drawings of K_{4} up to homeomorphism.

- Use a double counting argument for separations to obtain:

Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

w is to the left of $u v$

w is to the right of $u v$
- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_{k}(D)$ denote the number of k-edges in D.
- There are only three simple drawings of K_{4} up to homeomorphism.

- Use a double counting argument for separations to obtain:

Lemma

For a simple drawing D of K_{n} we get $\operatorname{cr}(D)=3\binom{n}{4}-\sum_{k=0}^{\lfloor n / 2\rfloor-1} k(n-2-k) E_{k}(D)$.

Sketch of the Proof: Main Trick

Sketch of the Proof: Main Trick

- We have expressed $\operatorname{cr}(D)$ in terms of $E_{k}(D)$.

Sketch of the Proof: Main Trick

- We have expressed $\operatorname{cr}(D)$ in terms of $E_{k}(D)$.
- However no sufficiently strong bounds for $E_{k}(D)$ are known.

Sketch of the Proof: Main Trick

- We have expressed $\operatorname{cr}(D)$ in terms of $E_{k}(D)$.
- However no sufficiently strong bounds for $E_{k}(D)$ are known.
- Trick: we estimate the sums $E_{\leq \leq k}(D)$ defined as

$$
E_{\leq \leq k}(D):=\sum_{j=0}^{k} \sum_{i=0}^{j} E_{i}(D)=\sum_{i=0}^{k}(k+1-i) E_{i}(D) .
$$

Sketch of the Proof: Main Trick

- We have expressed $\operatorname{cr}(D)$ in terms of $E_{k}(D)$.
- However no sufficiently strong bounds for $E_{k}(D)$ are known.
- Trick: we estimate the sums $E_{\leq \leq k}(D)$ defined as

$$
E_{\leq \leq k}(D):=\sum_{j=0}^{k} \sum_{i=0}^{j} E_{i}(D)=\sum_{i=0}^{k}(k+1-i) E_{i}(D) .
$$

Lemma

For every simple drawing D of K_{n} we have

$$
\operatorname{cr}(D)=2 \sum_{k=0}^{\lfloor n / 2\rfloor-2} E_{\leq \leq k}(D)-\frac{1}{2}\binom{n}{2}\left\lfloor\frac{n-2}{2}\right\rfloor-\frac{1}{2}\left(1+(-1)^{n}\right) E_{\leq \leq\lfloor n / 2\rfloor-2}(D) .
$$

Sketch of the Proof: Main Trick

- We have expressed $\operatorname{cr}(D)$ in terms of $E_{k}(D)$.
- However no sufficiently strong bounds for $E_{k}(D)$ are known.
- Trick: we estimate the sums $E_{\leq \leq k}(D)$ defined as

$$
E_{\leq \leq k}(D):=\sum_{j=0}^{k} \sum_{i=0}^{j} E_{i}(D)=\sum_{i=0}^{k}(k+1-i) E_{i}(D) .
$$

Lemma

For every simple drawing D of K_{n} we have

$$
\operatorname{cr}(D)=2 \sum_{k=0}^{\lfloor n / 2\rfloor-2} E_{\leq \leq k}(D)-\frac{1}{2}\binom{n}{2}\left\lfloor\frac{n-2}{2}\right\rfloor-\frac{1}{2}\left(1+(-1)^{n}\right) E_{\leq \leq\lfloor n / 2\rfloor-2}(D) .
$$

- That is, we want a lower bound for $E_{\leq \leq k}(D)$.

Sketch of the Proof: Structure of k-edges

Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

- Up to this step we did not require D to be x-monotone.

Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

- Up to this step we did not require D to be x-monotone.
- For a simple x-monotone drawing D of K_{n} let D^{\prime} be D with the rightmost vertex removed.

Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

- Up to this step we did not require D to be x-monotone.
- For a simple x-monotone drawing D of K_{n} let D^{\prime} be D with the rightmost vertex removed.
- A k-edge in D is a $\left(D, D^{\prime}\right)$-invariant k-edge if it is a k-edge in D^{\prime}.

Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

- Up to this step we did not require D to be x-monotone.
- For a simple x-monotone drawing D of K_{n} let D^{\prime} be D with the rightmost vertex removed.
- A k-edge in D is a $\left(D, D^{\prime}\right)$-invariant k-edge if it is a k-edge in D^{\prime}.
- Let $E_{k}\left(D, D^{\prime}\right)$ be the number of $\left(D, D^{\prime}\right)$-invariant k-edges.

Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

- Up to this step we did not require D to be x-monotone.
- For a simple x-monotone drawing D of K_{n} let D^{\prime} be D with the rightmost vertex removed.
- A k-edge in D is a $\left(D, D^{\prime}\right)$-invariant k-edge if it is a k-edge in D^{\prime}.
- Let $E_{k}\left(D, D^{\prime}\right)$ be the number of $\left(D, D^{\prime}\right)$-invariant k-edges.
- Let $E_{\leq k}\left(D, D^{\prime}\right)$ be the sum $\sum_{i=0}^{k} E_{k}\left(D, D^{\prime}\right)$.

Sketch of the Proof: Invariant k-edges

Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have $E_{\leq k}\left(D, D^{\prime}\right) \geq \sum_{i=1}^{k+1}(k+2-i)=\binom{k+2}{2}$.

Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have $E_{\leq k}\left(D, D^{\prime}\right) \geq \sum_{i=1}^{k+1}(k+2-i)=\binom{k+2}{2}$.

- For $0 \leq k \leq(n-3) / 2$ and every $i \in[k+1]$, the $k+2-i$ bottommost and $k+2-i$ topmost right edges at v_{i} are j-edges for some $j \leq k$.

Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have $E_{\leq k}\left(D, D^{\prime}\right) \geq \sum_{i=1}^{k+1}(k+2-i)=\binom{k+2}{2}$.

- For $0 \leq k \leq(n-3) / 2$ and every $i \in[k+1]$, the $k+2-i$ bottommost and $k+2-i$ topmost right edges at v_{i} are j-edges for some $j \leq k$.

$$
D \text { simple } x \text {-monotone, }
$$

$$
0 \leq k \leq(n-3) / 2
$$

$$
i \bar{\in}[k \overline{+} 1]
$$

Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have $E_{\leq k}\left(D, D^{\prime}\right) \geq \sum_{i=1}^{k+1}(k+2-i)=\binom{k+2}{2}$.

- For $0 \leq k \leq(n-3) / 2$ and every $i \in[k+1]$, the $k+2-i$ bottommost and $k+2-i$ topmost right edges at v_{i} are j-edges for some $j \leq k$.

$$
\begin{aligned}
& D \text { simple } x \text {-monotone, } \\
& 0 \leq k \leq(n-3) / 2 \\
& i \in[k+1]
\end{aligned}
$$

Sketch of the Proof: Final Bound

Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_{n}. Then for every k, $0 \leq k<n / 2-1$, we have $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$.

Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_{n}. Then for every k, $0 \leq k<n / 2-1$, we have $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$.

- Proceed by induction on n and k.

Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_{n}. Then for every k, $0 \leq k<n / 2-1$, we have $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$.

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to $E_{\leq \leq k}(D)$ by

$$
2 \sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2}
$$

Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_{n}. Then for every k, $0 \leq k<n / 2-1$, we have $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$.

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to $E_{\leq \leq k}(D)$ by

$$
2 \sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2} .
$$

- An i-edge, $i \leq k$, in D^{\prime} contributes by $k-i$ to $E_{\leq \leq k-1}\left(D^{\prime}\right)$ and by $k-i$ or $k-i+1$ to $E_{\leq \leq k}(D)$.

Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_{n}. Then for every k, $0 \leq k<n / 2-1$, we have $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$.

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to $E_{\leq \leq k}(D)$ by

$$
2 \sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2} .
$$

- An i-edge, $i \leq k$, in D^{\prime} contributes by $k-i$ to $E_{\leq \leq k-1}\left(D^{\prime}\right)$ and by $k-i$ or $k-i+1$ to $E_{\leq \leq k}(D)$.
- Altogether we have:

$$
E_{\leq \leq k}(D)=2\binom{k+2}{2}+E_{\leq \leq k-1}\left(D^{\prime}\right)+E_{\leq k}\left(D, D^{\prime}\right)
$$

Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_{n}. Then for every k, $0 \leq k<n / 2-1$, we have $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$.

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to $E_{\leq \leq k}(D)$ by

$$
2 \sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2} .
$$

- An i-edge, $i \leq k$, in D^{\prime} contributes by $k-i$ to $E_{\leq \leq k-1}\left(D^{\prime}\right)$ and by $k-i$ or $k-i+1$ to $E_{\leq \leq k}(D)$.
- Altogether we have:

$$
\begin{aligned}
& E_{\leq \leq k}(D)=2\binom{k+2}{2}+E_{\leq \leq k-1}\left(D^{\prime}\right)+E_{\leq k}\left(D, D^{\prime}\right) \\
\geq & 3\binom{k+3}{3}-\binom{k+2}{2}+E_{\leq k}\left(D, D^{\prime}\right) \geq 3\binom{k+3}{3} .
\end{aligned}
$$

Characterization of Pseudolinear and x-monotone Drawings

Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_{n}.

Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_{n}.
- Color each triangle with a sign + or - according to its orientation $\Rightarrow a$ signature of D.

Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_{n}.
- Color each triangle with a sign + or - according to its orientation $\Rightarrow a$ signature of D.
- All 16 possible forms of 4-tuples:

Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_{n}.
- Color each triangle with a sign + or - according to its orientation $\Rightarrow a$ signature of D.
- All 16 possible forms of 4-tuples:

- - - -

$++--$

$-+++$

+ - -

$+++-$

- + - -

- -+-

Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_{n}.
- Color each triangle with a sign + or - according to its orientation $\Rightarrow a$ signature of D.
- All 16 possible forms of 4-tuples:

Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_{n}.
- Color each triangle with a sign + or - according to its orientation \Rightarrow a signature of D.
- All 16 possible forms of 4-tuples:

Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_{n}.
- Color each triangle with a sign + or - according to its orientation \Rightarrow a signature of D.
- All 16 possible forms of 4-tuples:

General Drawings

General Drawings

- There are (optimal) drawings of K_{n} where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

General Drawings

- There are (optimal) drawings of K_{n} where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

General Drawings

- There are (optimal) drawings of K_{n} where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

General Drawings

- There are (optimal) drawings of K_{n} where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

- Here we have $E_{0}=5$ and $E_{1}=0$, hence $E_{\leq \leq 1}=10<12=3\binom{1+3}{3}$.

General Drawings

- There are (optimal) drawings of K_{n} where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

- Here we have $E_{0}=5$ and $E_{1}=0$, hence $E_{\leq \leq 1}=10<12=3\binom{1+3}{3}$.
- Consider the number $E_{\leq \leq \leq k}(D):=\sum_{j=0}^{k} E_{\leq \leq j}(D)=\sum_{i=0}^{k}\binom{k+2-i}{2} E_{i}(D)$.

General Drawings

- There are (optimal) drawings of K_{n} where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

- Here we have $E_{0}=5$ and $E_{1}=0$, hence $E_{\leq \leq 1}=10<12=3\binom{1+3}{3}$.
- Consider the number $E_{\leq \leq \leq k}(D):=\sum_{j=0}^{k} E_{\leq \leq j}(D)=\sum_{i=0}^{k}\binom{k+2-i}{2} E_{i}(D)$.

Conjecture

Let $n \geq 3$ and let D be a simple drawing of K_{n}. Then for every k satisfying $0 \leq k<n / 2-1$, we have $E_{\leq \leq \leq k}(D) \geq 3\binom{k+4}{4}$.

General Drawings

- There are (optimal) drawings of K_{n} where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

- Here we have $E_{0}=5$ and $E_{1}=0$, hence $E_{\leq \leq 1}=10<12=3\binom{1+3}{3}$.
- Consider the number $E_{\leq \leq \leq k}(D):=\sum_{j=0}^{k} E_{\leq \leq j}(D)=\sum_{i=0}^{k}\binom{k+2-i}{2} E_{i}(D)$.

Conjecture

Let $n \geq 3$ and let D be a simple drawing of K_{n}. Then for every k satisfying $0 \leq k<n / 2-1$, we have $E_{\leq \leq \leq k}(D) \geq 3\binom{k+4}{4}$.

- Implies Hill's conjecture. All drawings we have found satisfy this conjecture.

