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Drawing of a graph G : vertices = distinct points in R
2, edges = simple

continuous arcs.

Forbidden:

Passing through vertices Infinitely many points in common Edges touching Multiple crossings

A drawing is simple if every two edges have at most one point in common.

or

In a semisimple drawing independent edges may cross more than once.

A drawing is called x-monotone if edges are x-monotone curves.
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A crossing in a drawing D of G is a common interior point of two edges.

The crossing number cr(G ) of G is the minimum number of crossings cr(D)
in D taken over all drawings D of G .

Observation

All drawings with minimum number of crossings are simple.

The monotone crossing number mon-cr(G ) of G is the minimum number of
crossings cr(D) in D taken over all x-monotone drawings D of G .
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Crossing Number of Kn

Conjecture (Hill, 1958)

We have cr(Kn) = Z (n) := 1

4

⌊
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2

⌋ ⌊

n−1

2

⌋ ⌊

n−2

2

⌋ ⌊

n−3

2

⌋

for every n ∈ N.

The conjecture is still open.

We have cr(Kn) ≤ Z (n) (Harary and Hill 1963, Blažek and Koman 1964).

Hill’s optimal drawing of K10: Optimal 2-page drawing of K10:

A drawing is 2-page if the vertices are placed on a line ℓ and each edge is
fully contained in a halfspace determined by ℓ.
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Main Result

Proving the lower bound = hard part of Hill’s conjecture.

Best lower bound: cr(Kn) ≥ 0.8594 · Z (n) (Richter and Thomassen, 1997).

What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every n ∈ N we have mon-cr(Kn) = Z (n).

Proven independently by (Ábrego et al., 2013) using the same techniques.

This result can be generalized to:

s-shellable drawings, s ≥ n/2 (Ábrego et al., 2013),
x-monotone weakly semisimple odd crossing number,
weakly semisimple s-shellable drawings.

Since 2-page drawings are x-monotone, we have mon-cr(Kn) ≤ Z (n).
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Key idea: generalize the concept of k-edges (Ábrego et al., 2012).
w

u v

w is to the left of uv

w

u v

w is to the right of uv

A k-edge is an edge that has exactly k vertices on the same side.

Let Ek(D) denote the number of k-edges in D.

There are only three simple drawings of K4 up to homeomorphism.

Use a double counting argument for separations to obtain:

Lemma

For a simple drawing D of Kn we get cr(D) = 3
(

n
4

)

−
∑⌊n/2⌋−1

k=0
k(n− 2− k)Ek(D).



Sketch of the Proof: Main Trick



Sketch of the Proof: Main Trick

We have expressed cr(D) in terms of Ek(D).



Sketch of the Proof: Main Trick

We have expressed cr(D) in terms of Ek(D).

However no sufficiently strong bounds for Ek(D) are known.



Sketch of the Proof: Main Trick

We have expressed cr(D) in terms of Ek(D).

However no sufficiently strong bounds for Ek(D) are known.

Trick: we estimate the sums E≤≤k(D) defined as

E≤≤k(D) :=
k

∑

j=0

j
∑

i=0

Ei (D) =
k
∑

i=0

(k + 1− i)Ei (D).



Sketch of the Proof: Main Trick

We have expressed cr(D) in terms of Ek(D).

However no sufficiently strong bounds for Ek(D) are known.

Trick: we estimate the sums E≤≤k(D) defined as

E≤≤k(D) :=
k

∑

j=0

j
∑

i=0

Ei (D) =
k
∑

i=0

(k + 1− i)Ei (D).

Lemma

For every simple drawing D of Kn we have

cr(D) = 2

⌊n/2⌋−2
∑

k=0

E≤≤k(D)−
1

2

(

n

2

)⌊

n− 2

2

⌋

−
1

2
(1 + (−1)n)E≤≤⌊n/2⌋−2(D).



Sketch of the Proof: Main Trick

We have expressed cr(D) in terms of Ek(D).

However no sufficiently strong bounds for Ek(D) are known.

Trick: we estimate the sums E≤≤k(D) defined as

E≤≤k(D) :=
k

∑

j=0

j
∑

i=0

Ei (D) =
k
∑

i=0

(k + 1− i)Ei (D).

Lemma

For every simple drawing D of Kn we have

cr(D) = 2

⌊n/2⌋−2
∑

k=0

E≤≤k(D)−
1

2

(

n

2

)⌊

n− 2

2

⌋

−
1

2
(1 + (−1)n)E≤≤⌊n/2⌋−2(D).

That is, we want a lower bound for E≤≤k(D).
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Up to this step we did not require D to be x-monotone.

For a simple x-monotone drawing D of Kn let D ′ be D with the rightmost
vertex removed.

A k-edge in D is a (D,D ′)-invariant k-edge if it is a k-edge in D ′.

Let Ek(D,D ′) be the number of (D,D ′)-invariant k-edges.

Let E≤k(D,D ′) be the sum
∑k

i=0
Ek(D,D ′).
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Lemma

For a simple x-monotone D we have E≤k(D,D ′) ≥
∑k+1

i=1
(k + 2− i) =

(

k+2

2

)

.

For 0 ≤ k ≤ (n − 3)/2 and every i ∈ [k + 1], the k + 2− i bottommost and
k + 2− i topmost right edges at vi are j-edges for some j ≤ k .

vi vn

D simple x-monotone,

}
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k + 2− i

k + 2− i

0 ≤ k ≤ (n− 3)/2
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Use the orientations of triangles to characterize x-monotone drawings of Kn.
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There are (optimal) drawings of Kn where E≤≤k(D) ≥ 3
(

k+3

3

)

does not hold.

Here we have E0 = 5 and E1 = 0, hence E≤≤1 = 10 < 12 = 3
(

1+3

3

)

.

Consider the number E≤≤≤k(D):=
∑k

j=0
E≤≤j(D) =

∑k
i=0

(

k+2−i
2

)

Ei (D).

Conjecture

Let n ≥ 3 and let D be a simple drawing of Kn. Then for every k satisfying
0 ≤ k < n/2− 1, we have E≤≤≤k(D) ≥ 3

(

k+4

4

)

.

Implies Hill’s conjecture. All drawings we have found satisfy this conjecture.


