#### Recent Progress on Hill's Conjecture

#### Martin Balko, Radoslav Fulek and Jan Kynčl

Charles University in Prague, Czech Republic

August 3, 2014



• Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.

- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:

- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



Passing through vertices

- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



• A drawing is simple if every two edges have at most one point in common.

- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



• A drawing is simple if every two edges have at most one point in common.



- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



• A drawing is simple if every two edges have at most one point in common.



• In a semisimple drawing independent edges may cross more than once.

- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



• A drawing is simple if every two edges have at most one point in common.



• In a semisimple drawing independent edges may cross more than once.

- Drawing of a graph G: vertices = distinct points in  $\mathbb{R}^2$ , edges = simple continuous arcs.
- Forbidden:



• A drawing is simple if every two edges have at most one point in common.



- In a semisimple drawing independent edges may cross more than once.
- A drawing is called *x*-monotone if edges are *x*-monotone curves.

ullet A crossing in a drawing D of G is a common interior point of two edges.

- ullet A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number cr(G) of G is the minimum number of crossings cr(D) in D taken over all drawings D of G.

- ullet A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number cr(G) of G is the minimum number of crossings cr(D) in D taken over all drawings D of G.

#### Observation

All drawings with minimum number of crossings are simple.

- ullet A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number cr(G) of G is the minimum number of crossings cr(D) in D taken over all drawings D of G.

#### Observation

All drawings with minimum number of crossings are simple.





- ullet A crossing in a drawing D of G is a common interior point of two edges.
- The crossing number cr(G) of G is the minimum number of crossings cr(D) in D taken over all drawings D of G.

#### Observation

All drawings with minimum number of crossings are simple.



• The monotone crossing number mon-cr(G) of G is the minimum number of crossings cr(D) in D taken over all  $\underline{x}$ -monotone drawings D of G.

#### Conjecture (Hill, 1958)

We have  $\operatorname{cr}(K_n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$  for every  $n \in \mathbb{N}$ .

#### Conjecture (Hill, 1958)

We have 
$$\operatorname{cr}(K_n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$
 for every  $n \in \mathbb{N}$ .

• The conjecture is still open.

#### Conjecture (Hill, 1958)

We have 
$$\operatorname{cr}(K_n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$
 for every  $n \in \mathbb{N}$ .

- The conjecture is still open.
- We have  $cr(K_n) \le Z(n)$  (Harary and Hill 1963, Blažek and Koman 1964).

#### Conjecture (Hill, 1958)

We have 
$$\operatorname{cr}(K_n) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$
 for every  $n \in \mathbb{N}$ .

- The conjecture is still open.
- We have  $cr(K_n) \leq Z(n)$  (Harary and Hill 1963, Blažek and Koman 1964).
  - Hill's optimal drawing of  $K_{10}$ :



#### Conjecture (Hill, 1958)

We have 
$$\operatorname{cr}(K_n) = \frac{\mathbb{Z}(n)}{4} = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$
 for every  $n \in \mathbb{N}$ .

- The conjecture is still open.
- We have  $cr(K_n) \le Z(n)$  (Harary and Hill 1963, Blažek and Koman 1964).
  - Hill's optimal drawing of  $K_{10}$ :





• Optimal 2-page drawing of  $K_{10}$ :

#### Conjecture (Hill, 1958)

We have 
$$\operatorname{cr}(K_n) = \frac{Z(n)}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$
 for every  $n \in \mathbb{N}$ .

- The conjecture is still open.
- We have  $cr(K_n) \leq Z(n)$  (Harary and Hill 1963, Blažek and Koman 1964).
  - Hill's optimal drawing of  $K_{10}$ :

• Optimal 2-page drawing of  $K_{10}$ :





• A drawing is 2-page if the vertices are placed on a line  $\ell$  and each edge is fully contained in a halfspace determined by  $\ell$ .

• Proving the lower bound = hard part of Hill's conjecture.

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

#### Theorem (B., Fulek, Kynčl, 2013)

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

#### Theorem (B., Fulek, Kynčl, 2013)

For every  $n \in \mathbb{N}$  we have mon-cr $(K_n) = Z(n)$ .

• Proven independently by (Ábrego et al., 2013) using the same techniques.

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

#### Theorem (B., Fulek, Kynčl, 2013)

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

#### Theorem (B., Fulek, Kynčl, 2013)

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
  - s-shellable drawings,  $s \ge n/2$  (Ábrego et al., 2013),

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

#### Theorem (B., Fulek, Kynčl, 2013)

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
  - s-shellable drawings,  $s \ge n/2$  (Ábrego et al., 2013),
  - x-monotone weakly semisimple odd crossing number,

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

#### Theorem (B., Fulek, Kynčl, 2013)

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
  - s-shellable drawings,  $s \ge n/2$  (Ábrego et al., 2013),
  - x-monotone weakly semisimple odd crossing number,
  - weakly semisimple s-shellable drawings.

### Main Result

- Proving the lower bound = hard part of Hill's conjecture.
- Best lower bound:  $cr(K_n) \ge 0.8594 \cdot Z(n)$  (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

### Theorem (B., Fulek, Kynčl, 2013)

For every  $n \in \mathbb{N}$  we have mon-cr $(K_n) = Z(n)$ .

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
  - s-shellable drawings,  $s \ge n/2$  (Ábrego et al., 2013),
  - x-monotone weakly semisimple odd crossing number,
  - weakly semisimple s-shellable drawings.
- Since 2-page drawings are x-monotone, we have mon-cr( $K_n$ )  $\leq Z(n)$ .



• Key idea: generalize the concept of k-edges (Ábrego et al., 2012).



 $\bullet$  A k-edge is an edge that has exactly k vertices on the same side.



- A k-edge is an edge that has exactly k vertices on the same side.
- Let  $E_k(D)$  denote the number of k-edges in D.



- A k-edge is an edge that has exactly k vertices on the same side.
- Let  $E_k(D)$  denote the number of k-edges in D.
- There are only three simple drawings of  $K_4$  up to homeomorphism.



- A k-edge is an edge that has exactly k vertices on the same side.
- Let  $E_k(D)$  denote the number of k-edges in D.
- There are only three simple drawings of  $K_4$  up to homeomorphism.







• Key idea: generalize the concept of k-edges (Ábrego et al., 2012).



- A k-edge is an edge that has exactly k vertices on the same side.
- Let  $E_k(D)$  denote the number of k-edges in D.
- There are only three simple drawings of  $K_4$  up to homeomorphism.







• Use a double counting argument for separations to obtain:

• Key idea: generalize the concept of k-edges (Ábrego et al., 2012).



- A k-edge is an edge that has exactly k vertices on the same side.
- Let  $E_k(D)$  denote the number of k-edges in D.
- There are only three simple drawings of  $K_4$  up to homeomorphism.







• Use a double counting argument for separations to obtain:

### Lemma

For a simple drawing D of  $K_n$  we get  $\operatorname{cr}(D) = 3\binom{n}{4} - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n-2-k)E_k(D)$ .

• We have expressed cr(D) in terms of  $E_k(D)$ .

- We have expressed cr(D) in terms of  $E_k(D)$ .
- However no sufficiently strong bounds for  $E_k(D)$  are known.

- We have expressed cr(D) in terms of  $E_k(D)$ .
- However no sufficiently strong bounds for  $E_k(D)$  are known.
- Trick: we estimate the sums  $E_{<< k}(D)$  defined as

$$E_{\leq \leq k}(D) := \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) = \sum_{i=0}^{k} (k+1-i)E_i(D).$$

- We have expressed cr(D) in terms of  $E_k(D)$ .
- However no sufficiently strong bounds for  $E_k(D)$  are known.
- Trick: we estimate the sums  $E_{<< k}(D)$  defined as

$$E_{\leq \leq k}(D) := \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) = \sum_{i=0}^{k} (k+1-i)E_i(D).$$

### Lemma

For every simple drawing D of  $K_n$  we have

$$\operatorname{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 2} E_{\leq \leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n-2}{2} \right\rfloor - \frac{1}{2} (1 + (-1)^n) E_{\leq \leq \lfloor n/2 \rfloor - 2}(D).$$

- We have expressed cr(D) in terms of  $E_k(D)$ .
- However no sufficiently strong bounds for  $E_k(D)$  are known.
- Trick: we estimate the sums  $E_{<< k}(D)$  defined as

$$E_{\leq \leq k}(D) := \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) = \sum_{i=0}^{k} (k+1-i)E_i(D).$$

### Lemma

For every simple drawing D of  $K_n$  we have

$$\operatorname{cr}(D) = \ 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 2} E_{\leq \leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n-2}{2} \right\rfloor - \frac{1}{2} (1 + (-1)^n) \, E_{\leq \leq \lfloor n/2 \rfloor - 2}(D).$$

• That is, we want a lower bound for  $E_{<< k}(D)$ .



D simple, v on the outerface



D simple, v on the outerface



ullet Up to this step we did not require D to be x-monotone.



- Up to this step we did not require *D* to be *x*-monotone.
- For a simple x-monotone drawing D of  $K_n$  let D' be D with the rightmost vertex removed.



- Up to this step we did not require *D* to be *x*-monotone.
- For a simple x-monotone drawing D of  $K_n$  let D' be D with the rightmost vertex removed.
- A k-edge in D is a (D, D')-invariant k-edge if it is a k-edge in D'.



- Up to this step we did not require *D* to be *x*-monotone.
- For a simple x-monotone drawing D of  $K_n$  let D' be D with the rightmost vertex removed.
- A k-edge in D is a (D, D')-invariant k-edge if it is a k-edge in D'.
- Let  $E_k(D, D')$  be the number of (D, D')-invariant k-edges.



- Up to this step we did not require *D* to be *x*-monotone.
- For a simple x-monotone drawing D of  $K_n$  let D' be D with the rightmost vertex removed.
- A k-edge in D is a (D, D')-invariant k-edge if it is a k-edge in D'.
- Let  $E_k(D, D')$  be the number of (D, D')-invariant k-edges.
- Let  $E_{\leq k}(D, D')$  be the sum  $\sum_{i=0}^{k} E_k(D, D')$ .

### Lemma

For a simple x-monotone D we have  $E_{\leq k}(D, D') \geq \sum_{i=1}^{k+1} (k+2-i) = {k+2 \choose 2}$ .

### Lemma

For a simple x-monotone D we have  $E_{\leq k}(D,D') \geq \sum_{i=1}^{k+1} (k+2-i) = {k+2 \choose 2}$ .

• For  $0 \le k \le (n-3)/2$  and every  $i \in [k+1]$ , the k+2-i bottommost and k+2-i topmost right edges at  $v_i$  are j-edges for some  $j \le k$ .

### Lemma

For a simple x-monotone D we have  $E_{\leq k}(D,D') \geq \sum_{i=1}^{k+1} (k+2-i) = {k+2 \choose 2}$ .

• For  $0 \le k \le (n-3)/2$  and every  $i \in [k+1]$ , the k+2-i bottommost and k+2-i topmost right edges at  $v_i$  are j-edges for some  $j \le k$ .



### Lemma

For a simple x-monotone D we have  $E_{\leq k}(D, D') \geq \sum_{i=1}^{k+1} (k+2-i) = {k+2 \choose 2}$ .

• For  $0 \le k \le (n-3)/2$  and every  $i \in [k+1]$ , the k+2-i bottommost and k+2-i topmost right edges at  $v_i$  are j-edges for some  $j \le k$ .



### **Theorem**

Let  $n \ge 3$  and let D be a simple x-monotone drawing of  $K_n$ . Then for every k,  $0 \le k < n/2 - 1$ , we have  $E_{<< k}(D) \ge 3\binom{k+3}{3}$ .

### **Theorem**

Let  $n \ge 3$  and let D be a simple x-monotone drawing of  $K_n$ . Then for every k,  $0 \le k < n/2 - 1$ , we have  $E_{<< k}(D) \ge 3\binom{k+3}{3}$ .

• Proceed by induction on n and k.

### Theorem

Let  $n \ge 3$  and let D be a simple x-monotone drawing of  $K_n$ . Then for every k,  $0 \le k < n/2 - 1$ , we have  $E_{<< k}(D) \ge 3\binom{k+3}{3}$ .

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to  $E_{<< k}(D)$  by

$$2\sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2}.$$

### Theorem

Let  $n \ge 3$  and let D be a simple x-monotone drawing of  $K_n$ . Then for every k,  $0 \le k < n/2 - 1$ , we have  $E_{<< k}(D) \ge 3\binom{k+3}{3}$ .

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to  $E_{<< k}(D)$  by

$$2\sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2}.$$

• An *i*-edge,  $i \le k$ , in D' contributes by k-i to  $E_{\le k-1}(D')$  and by k-i or k-i+1 to  $E_{<< k}(D)$ .

### **Theorem**

Let  $n \ge 3$  and let D be a simple x-monotone drawing of  $K_n$ . Then for every k,  $0 \le k < n/2 - 1$ , we have  $E_{<< k}(D) \ge 3\binom{k+3}{3}$ .

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to  $E_{\leq \leq k}(D)$  by

$$2\sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2}.$$

- An *i*-edge,  $i \le k$ , in D' contributes by k-i to  $E_{\le \le k-1}(D')$  and by k-i or k-i+1 to  $E_{<< k}(D)$ .
- Altogether we have:

$$E_{\leq \leq k}(D) = 2\binom{k+2}{2} + E_{\leq \leq k-1}(D') + E_{\leq k}(D,D')$$

### **Theorem**

Let  $n \ge 3$  and let D be a simple x-monotone drawing of  $K_n$ . Then for every k,  $0 \le k < n/2 - 1$ , we have  $E_{<< k}(D) \ge 3\binom{k+3}{3}$ .

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to  $E_{<< k}(D)$  by

$$2\sum_{i=0}^{k}(k+1-i)=2\binom{k+2}{2}.$$

- An *i*-edge,  $i \le k$ , in D' contributes by k-i to  $E_{\le k-1}(D')$  and by k-i or k-i+1 to  $E_{<< k}(D)$ .
- Altogether we have:

$$E_{\leq \leq k}(D) = 2\binom{k+2}{2} + E_{\leq \leq k-1}(D') + E_{\leq k}(D, D')$$

$$\geq 3\binom{k+3}{3} - \binom{k+2}{2} + E_{\leq k}(D, D') \geq 3\binom{k+3}{3}. \quad \Box$$

ullet Use the orientations of triangles to characterize x-monotone drawings of  $K_n$ .

- ullet Use the orientations of triangles to characterize x-monotone drawings of  $K_n$ .
- Color each triangle with a sign + or − according to its orientation ⇒ a signature of D.

- ullet Use the orientations of triangles to characterize x-monotone drawings of  $K_n$ .
- Color each triangle with a sign + or − according to its orientation ⇒ a signature of D.
- All 16 possible forms of 4-tuples:

- Use the orientations of triangles to characterize x-monotone drawings of  $K_n$ .
- Color each triangle with a sign + or − according to its orientation ⇒ a signature of D.
- All 16 possible forms of 4-tuples:



- ullet Use the orientations of triangles to characterize x-monotone drawings of  $K_n$ .
- Color each triangle with a sign + or − according to its orientation ⇒ a signature of D.
- All 16 possible forms of 4-tuples:



- ullet Use the orientations of triangles to characterize x-monotone drawings of  $K_n$ .
- Color each triangle with a sign + or − according to its orientation ⇒ a signature of D.
- All 16 possible forms of 4-tuples:



- Use the orientations of triangles to characterize x-monotone drawings of  $K_n$ .
- Color each triangle with a sign + or − according to its orientation ⇒ a signature of D.
- All 16 possible forms of 4-tuples:



• There are (optimal) drawings of  $K_n$  where  $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$  does not hold.

ullet There are (optimal) drawings of  $K_n$  where  $E_{\leq \leq k}(D) \geq 3 {k+3 \choose 3}$  does not hold.



ullet There are (optimal) drawings of  $K_n$  where  $E_{\leq \leq k}(D) \geq 3 {k+3 \choose 3}$  does not hold.





• There are (optimal) drawings of  $K_n$  where  $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$  does not hold.





• Here we have  $E_0 = 5$  and  $E_1 = 0$ , hence  $E_{\leq \leq 1} = 10 < 12 = 3\binom{1+3}{3}$ .

• There are (optimal) drawings of  $K_n$  where  $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$  does not hold.





- Here we have  $E_0 = 5$  and  $E_1 = 0$ , hence  $E_{\leq \leq 1} = 10 < 12 = 3\binom{1+3}{3}$ .
- Consider the number  $E_{\leq \leq \leq k}(D) := \sum_{j=0}^k E_{\leq \leq j}(D) = \sum_{i=0}^k {k+2-i \choose 2} E_i(D)$ .

• There are (optimal) drawings of  $K_n$  where  $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$  does not hold.





- Here we have  $E_0 = 5$  and  $E_1 = 0$ , hence  $E_{\leq \leq 1} = 10 < 12 = 3\binom{1+3}{3}$ .
- Consider the number  $E_{\leq \leq \leq k}(D) := \sum_{j=0}^{k} E_{\leq \leq j}(D) = \sum_{i=0}^{k} {k+2-i \choose 2} E_i(D)$ .

#### Conjecture

Let  $n \ge 3$  and let D be a simple drawing of  $K_n$ . Then for every k satisfying  $0 \le k < n/2 - 1$ , we have  $E_{\le \le k}(D) \ge 3\binom{k+4}{4}$ .

• There are (optimal) drawings of  $K_n$  where  $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$  does not hold.





- Here we have  $E_0 = 5$  and  $E_1 = 0$ , hence  $E_{\leq \leq 1} = 10 < 12 = 3\binom{1+3}{3}$ .
- Consider the number  $E_{\leq \leq \leq k}(D) := \sum_{j=0}^k E_{\leq \leq j}(D) = \sum_{i=0}^k {k+2-i \choose 2} E_i(D)$ .

#### Conjecture

Let  $n \ge 3$  and let D be a simple drawing of  $K_n$ . Then for every k satisfying  $0 \le k < n/2 - 1$ , we have  $E_{\le \le k}(D) \ge 3\binom{k+4}{4}$ .

• Implies Hill's conjecture. All drawings we have found satisfy this conjecture.