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Preliminaries — Drawings

@ Drawing of a graph G: vertices = distinct points in R?, edges = simple
continuous arcs.
@ Forbidden:
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. /\/

{ /\/\/

Passing through vertices  Infinitely many points in common Edges touching Multiple crossings
@ A drawing is simple if every two edges have at most one point in common.

L ]
° or
[ ]

@ In a semisimple drawing independent edges may cross more than once.
@ A drawing is called x-monotone if edges are x-monotone curves.
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@ A crossing in a drawing D of G is a common interior point of two edges.

@ The crossing number cr(G) of G is the minimum number of crossings cr(D)
in D taken over all drawings D of G.

Observation
All drawings with minimum number of crossings are simple.
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@ The monotone crossing number mon-cr(G) of G is the minimum number of
crossings cr(D) in D taken over all x-monotone drawings D of G.
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Crossing Number of K|,

Conjecture (Hill, 1958)
We have cr(K,) = Z(n) :== 7 | 3] | %2 ] | 252] | 252] for every n € N.

T 7

@ The conjecture is still open.
@ We have cr(K,) < Z(n) (Harary and Hill 1963, Blazek and Koman 1964).

@ Hill's optimal drawing of Kig: @ Optimal 2-page drawing of Kio:

@ A drawing is 2-page if the vertices are placed on a line ¢ and each edge is
fully contained in a halfspace determined by /.
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Main Result

@ Proving the lower bound = hard part of Hill's conjecture.
@ Best lower bound: cr(K,) > 0.8594 - Z(n) (Richter and Thomassen, 1997).

@ What about other variants of the crossing number?

Theorem (B., Fulek, Kyn¢l, 2013)
For every n € N we have mon-cr(K,) = Z(n).

@ Proven independently by (Abrego et al., 2013) using the same techniques.
@ This result can be generalized to:

o s-shellable drawings, s > n/2 (Abrego et al.,, 2013),
@ x-monotone weakly semisimple odd crossing number,
o weakly semisimple s-shellable drawings.

@ Since 2-page drawings are x-monotone, we have mon-cr(K,) < Z(n).
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Sketch of the Proof: Double Counting

@ Key idea: generalize the concept of k-edges Abrego et al., 2012).

5

w is to the left of uv w is to the right of uv

@ A k-edge is an edge that has exactly k vertices on the same side.
@ Let Ex(D) denote the number of k-edges in D.
@ There are only three simple drawings of K4 up to homeomorphism.

/A

@ Use a double counting argument for separations to obtain:

Lemma

n

For a simple drawing D of K, we get cr(D) = 3(}) — ,L(';/gkl k(n—2—k)Ex(D).
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Sketch of the Proof: Main Trick

@ We have expressed cr(D) in terms of Ex(D).
@ However no sufficiently strong bounds for Ex(D) are known.

@ Trick: we estimate the sums E<<(D) defined as

Lemma
For every simple drawing D of K, we have

|n/2]—2

=2 Z E<<k(D ;(g) V;zJ —%( +(=1)") E<<|n/2)—2(D).

@ That is, we want a lower bound for E<<,(D).
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D simple, v on the outerface

Up to this step we did not require D to be x-monotone.

For a simple x-monotone drawing D of K, let D’ be D with the rightmost
vertex removed.

A k-edge in D is a (D, D’)-invariant k-edge if it is a k-edge in D’.
Let Ex(D, D’) be the number of (D, D')-invariant k-edges.
Let £<4(D, D') be the sum S, Ex(D, D").
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Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have E<x(D,D’) > Skt (k+2 — i) = (kJ2r2).

@ For 0 < k <(n—3)/2 and every i € [k + 1], the k + 2 — i bottommost and
k + 2 — i topmost right edges at v; are j-edges for some j < k.

bkt2—i
D simple z-monotone,

0<k<(n—3)/2
V; Up, ZE[k’—I—l]

} k42—
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Theorem

Let n > 3 and let D be a simple x-monotone drawing of K. Then for every k,
0< k< n/2—1, we have Ec<,(D) > 3(kJ3r3).

@ Proceed by induction on n and k.

@ Edges incident to the rightmost vertex contribute to E<<x(D) by

k
. k+2
2 )= .
Z(k +1-1) 2( ) )
i=0
® An j-edge, i < k, in D’ contributes by k — i to E<<x_1(D’") and by k — i or
k — I+ 1 to Eggk(D).
o Altogether we have:

k42
E<<x(D) = 2( 5 > + E<<k—1(D") + E<(D, D")

>3<k§3> _ <k72L2> +E<k(D,D/)>3<k—3i_3>. 0
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@ Use the orientations of triangles to characterize x-monotone drawings of Kj,.

@ Color each triangle with a sign + or — according to its orientation = a
signature of D.

@ All 16 possible forms of 4-tuples:
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Characterization of Pseudolinear and x-monotone Drawings

@ Use the orientations of triangles to characterize x-monotone drawings of Kj,.

@ Color each triangle with a sign + or — according to its orientation = a
signature of D.

@ All 16 possible forms of 4-tuples:

NN A LT B

— +H++ +4—— ——++
—+++ ——t +——— +++— —+—= ——+=

Pseudolinear

Simple z-monotone
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General Drawings

@ There are (optimal) drawings of K, where E<<x(D) > 3(*}?) does not hold.

@ Here we have Eg =5 and E; =0, hence E<<; =10 < 12 = 3(1§3).
@ Consider the number £ (D):= -4 E<<j(D) = Y1y (27 E(D).

Conjecture

Let n > 3 and let D be a simple drawing of K. Then for every k satisfying
0< k< n/2—1, we have Ec<<x(D) > 3(k1“4).

@ Implies Hill's conjecture. All drawings we have found satisfy this conjecture.



