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Introduction

For d ∈ N, let S be a collection of subsets in Rd and let P be a set of
points from Rd .

We say S covers P if every point from P lies in some set from S.

For n ∈ N, what is the minimum number of lines needed to cover n × n
lattice?

What if all the lines have to contain the origin?
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Covering by subspaces

Let k be an integer with 1 ≤ k ≤ d − 1.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to
cover the d-dimensional n × · · · × n lattice?

For affine subspaces the answer is Θ(nd−k).

Covering by linear subspaces is more difficult.

Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes
containing the origin, i.e., for k = d − 1.

They showed that the answer is Θ(nd/(d−1)).

Their proof works in the following more general setting.
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Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes
containing the origin, i.e., for k = d − 1.

They showed that the answer is Θ(nd/(d−1)).

Their proof works in the following more general setting.



Covering by subspaces

Let k be an integer with 1 ≤ k ≤ d − 1.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to
cover the d-dimensional n × · · · × n lattice?

For affine subspaces the answer is Θ(nd−k).

Covering by linear subspaces is more difficult.
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Lattices and symmetric convex bodies

For linearly independent vectors b1, . . . , bd ∈ Rd , the d-dimensional
lattice Λ with basis {b1, . . . , bd} is the set

Λ = {a1b1 + · · ·+ adbd : a1, . . . , ad ∈ Z}.

A convex body K is symmetric about 0 if K = −K .

Let Ld be the set of d-dimensional lattices and Kd be the set of
d-dimensional compact convex bodies in Rd that are symmetric about 0.
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Successive minima

Generalized problem 1

For Λ ∈ Ld and K ∈ Kd , what is the minimum number of k-dimensional linear
subspaces needed to cover Λ ∩ K?

How to measure |Λ ∩ K |?
For i = 1, . . . , d , the ith successive minimum of Λ and K is

λi = λi(Λ,K ) = inf{λ ∈ R : dim(Λ ∩ (λ · K )) ≥ i}.

K

The successive minima are achieved and 0 < λ1 ≤ · · · ≤ λd .
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Covering by hyperplanes (k = d − 1)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For Λ ∈ Ld and K ∈ Kd with λd ≤ 1, the set Λ ∩ K can be covered with at most

O

(
min

1≤j≤d−1
(λj · · ·λd)−1/(d−j)

)
(d − 1)-dimensional linear subspaces and this is tight if λd is not close to 1.

For Λ = Zd and K = [−n, n]d , we have λ1 = · · · = λd = 1/n and thus
j = 1, which gives the Θ(nd/(d−1)) bound.

The assumption λd ≤ 1 is necessary:

We consider Generalized problem 1 for general k .
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Our results – covering by linear subspaces

Theorem 1

For k with 1 ≤ k ≤ d − 1, Λ ∈ Ld , and K ∈ Kd with λd ≤ 1, we can cover
Λ ∩ K with O(αd−k) k-dimensional linear subspaces, where

α = min
1≤j≤k

(λj · · ·λd)−1/(d−j).

Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with 1 ≤ k ≤ d − 1, Λ ∈ Ld , K ∈ Kd with λd ≤ 1, and ε ∈ (0, 1), we
need at least Ω(((1− λd)β)d−k−ε) k-dimensional linear subspaces to cover
Λ ∩ K , where

β = min
1≤j≤d−1

(λj · · ·λd)−1/(d−j).

The bounds are not tight. The lower bound can be improved?
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Our results – covering by affine subspaces

The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with 1 ≤ k ≤ d − 1 and n ∈ N, the n × · · · × n lattice can be covered
with O(nd(d−k)/(d−1)) k-dimensional linear subspaces and for every ε > 0 we
need at least Ω(nd(d−k)/(d−1)−ε) k-dimensional linear subspaces to cover it.

We also consider the problem of covering Λ ∩ K with affine subspaces.

Theorem 3

For k with 1 ≤ k ≤ d − 1, Λ ∈ Ld , and K ∈ Kd with λd ≤ 1, the set Λ ∩ K
can be covered with

O((λk+1 · · ·λd)−1)

k-dimensional affine subspaces and this is tight.
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Sketch of the proof of Theorem 1

We want to cover Λ ∩ K with O(αd−k) k-dimensional linear subspaces,
where α = min1≤j≤k(λj · · ·λd)−1/(d−j).

We show the result for K being the unit ball Bd . The result for general
K ∈ Kd then follows by John’s Lemma.

Using Second Minkowski’s Theorem, we show that O((λk · · ·λd)−1)
k-dimensional linear subspaces are sufficient (i.e., prove the case j = k).

Then we proceed by induction on d − k = 1, . . . , d − 1.

We use the fact that the larger ‖z‖ is, the sparser (Λ ∩ H(z)) ∩ Bd is.
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Application: bounds for point-hyperplane incidences

An incidence between an n-point set P ⊆ Rd and a set of m hyperplanes
H in Rd is a pair (p,H) such that p ∈ P , H ∈ H, and p ∈ H .

What is the maximum number of incidences between P and H in Rd?

In the plane, the Szemerédi–Trotter Theorem says that it is at most
O((mn)2/3 + m + n) for all P and H. Moreover, this is tight.

For d ≥ 3 it is trivially at most mn and this is tight!

To avoid this, we forbid Kr ,r for some fixed r in the incidence graph.

Then the maximum number of incidences is at most
O
(
(mn)1−1/(d+1) + m + n

)
(Chazelle, 1993).
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Our results – counting point-hyperplane incidences

There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For d ≥ 3, ε > 0 there is an r such that for all n and m there is a set P of n
points in Rd and a set H of m hyperplanes in Rd with no Kr ,r in the
incidence graph and with the number of incidences at least

Ω
(
(mn)1−2/(d+3)−ε

)
if d is odd and d > 3,

Ω
(

(mn)1−2(d+1)/(d+2)2−ε
)

if d is even,

Ω
(
(mn)7/10

)
if d = 3.

For d ≥ 4, we improve these bounds to

Ω
(
(mn)1−(2d+3)/((d+2)(d+3))−ε

)
if d is odd,

Ω
(

(mn)1−(2d2+d−2)/((d+2)(d2+2d−2))−ε
)

if d is even.
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Final remarks

The gap in the exponents is of order Θ(1/d) and the improvement is of
order Θ(1/d2).

It is the first improvement in the last 13 years.

It provides the best known lower bound for so-called Semialgebraic
Zarankiewicz’s problem.

Open problems:

Close the gap between estimates from Theorem 1 and Theorem 2.
For 1 < k < d − 1, some fixed r ∈ N, and an arbitrarily large n ∈ N,
construct a set R ⊆ Zd ∩ [−n, n]d of size Ω(nd(d−k)/(d−1)) such
that no k-dimensional linear subspace contains r points from R .
Improve the bounds for the maximum number of point-hyperplane
incidences.

Thank you.
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