Covering lattice points by subspaces and counting point-hyperplane incidences

Martin Balko, Josef Cibulka, Pavel Valtr

Charles University and Ben-Gurion University of the Negev

May 6, 2017

Introduction

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- What if all the lines have to contain the origin?

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- What if all the lines have to contain the origin?

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- What if all the lines have to contain the origin?

Introduction

- For $d \in \mathbb{N}$, let \mathcal{S} be a collection of subsets in \mathbb{R}^{d} and let P be a set of points from \mathbb{R}^{d}.
- We say \mathcal{S} covers P if every point from P lies in some set from \mathcal{S}.
- For $n \in \mathbb{N}$, what is the minimum number of lines needed to cover $n \times n$ lattice?

- What if all the lines have to contain the origin?

Covering by subspaces

Covering by subspaces

- Let k be an integer with $1 \leq k \leq d-1$.

Covering by subspaces

- Let k be an integer with $1 \leq k \leq d-1$.

Problem 1 (Brass, Moser, Pach, 2005)
What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

Covering by subspaces

- Let k be an integer with $1 \leq k \leq d-1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta\left(n^{d-k}\right)$.

Covering by subspaces

- Let k be an integer with $1 \leq k \leq d-1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta\left(n^{d-k}\right)$.
- Covering by linear subspaces is more difficult.

Covering by subspaces

- Let k be an integer with $1 \leq k \leq d-1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta\left(n^{d-k}\right)$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for $k=d-1$.

Covering by subspaces

- Let k be an integer with $1 \leq k \leq d-1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta\left(n^{d-k}\right)$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for $k=d-1$.
- They showed that the answer is $\Theta\left(n^{d /(d-1)}\right)$.

Covering by subspaces

- Let k be an integer with $1 \leq k \leq d-1$.

Problem 1 (Brass, Moser, Pach, 2005)

What is the minimum number of k-dimensional linear subspaces needed to cover the d-dimensional $n \times \cdots \times n$ lattice?

- For affine subspaces the answer is $\Theta\left(n^{d-k}\right)$.
- Covering by linear subspaces is more difficult.
- Bárány, Harcos, Pach, Tardos (2001) solved the problem for hyperplanes containing the origin, i.e., for $k=d-1$.
- They showed that the answer is $\Theta\left(n^{d /(d-1)}\right)$.
- Their proof works in the following more general setting.

Lattices and symmetric convex bodies

Lattices and symmetric convex bodies

- For linearly independent vectors $b_{1}, \ldots, b_{d} \in \mathbb{R}^{d}$, the d-dimensional lattice Λ with basis $\left\{b_{1}, \ldots, b_{d}\right\}$ is the set

$$
\Lambda=\left\{a_{1} b_{1}+\cdots+a_{d} b_{d}: a_{1}, \ldots, a_{d} \in \mathbb{Z}\right\} .
$$

Lattices and symmetric convex bodies

- For linearly independent vectors $b_{1}, \ldots, b_{d} \in \mathbb{R}^{d}$, the d-dimensional lattice Λ with basis $\left\{b_{1}, \ldots, b_{d}\right\}$ is the set

$$
\Lambda=\left\{a_{1} b_{1}+\cdots+a_{d} b_{d}: a_{1}, \ldots, a_{d} \in \mathbb{Z}\right\} .
$$

$$
\begin{aligned}
& b_{1}=(1,0) \\
& b_{2}=(0,1)
\end{aligned}
$$

Lattices and symmetric convex bodies

- For linearly independent vectors $b_{1}, \ldots, b_{d} \in \mathbb{R}^{d}$, the d-dimensional lattice Λ with basis $\left\{b_{1}, \ldots, b_{d}\right\}$ is the set

$$
\Lambda=\left\{a_{1} b_{1}+\cdots+a_{d} b_{d}: a_{1}, \ldots, a_{d} \in \mathbb{Z}\right\} .
$$

$$
\begin{aligned}
& b_{1}=(1,0) \\
& b_{2}=(0,1)
\end{aligned}
$$

$$
b_{1}^{\prime}=(2,0)
$$

$$
b_{2}^{\prime}=(1,1)
$$

Lattices and symmetric convex bodies

- For linearly independent vectors $b_{1}, \ldots, b_{d} \in \mathbb{R}^{d}$, the d-dimensional lattice Λ with basis $\left\{b_{1}, \ldots, b_{d}\right\}$ is the set

$$
\Lambda=\left\{a_{1} b_{1}+\cdots+a_{d} b_{d}: a_{1}, \ldots, a_{d} \in \mathbb{Z}\right\} .
$$

$$
\begin{aligned}
& b_{1}=(1,0) \\
& b_{2}=(0,1)
\end{aligned}
$$

$$
b_{1}^{\prime}=(2,0)
$$

$$
b_{2}^{\prime}=(1,1)
$$

- A convex body K is symmetric about 0 if $K=-K$.

Lattices and symmetric convex bodies

- For linearly independent vectors $b_{1}, \ldots, b_{d} \in \mathbb{R}^{d}$, the d-dimensional lattice Λ with basis $\left\{b_{1}, \ldots, b_{d}\right\}$ is the set

$$
\Lambda=\left\{a_{1} b_{1}+\cdots+a_{d} b_{d}: a_{1}, \ldots, a_{d} \in \mathbb{Z}\right\} .
$$

$$
\begin{aligned}
& b_{1}^{\prime}=(2,0) \\
& b_{2}^{\prime}=(1,1)
\end{aligned}
$$

- A convex body K is symmetric about 0 if $K=-K$.

Lattices and symmetric convex bodies

- For linearly independent vectors $b_{1}, \ldots, b_{d} \in \mathbb{R}^{d}$, the d-dimensional lattice Λ with basis $\left\{b_{1}, \ldots, b_{d}\right\}$ is the set

$$
\Lambda=\left\{a_{1} b_{1}+\cdots+a_{d} b_{d}: a_{1}, \ldots, a_{d} \in \mathbb{Z}\right\} .
$$

$$
\begin{aligned}
& b_{1}^{\prime}=(2,0) \\
& b_{2}^{\prime}=(1,1)
\end{aligned}
$$

- A convex body K is symmetric about 0 if $K=-K$.

- Let \mathcal{L}^{d} be the set of d-dimensional lattices and \mathcal{K}^{d} be the set of d-dimensional compact convex bodies in \mathbb{R}^{d} that are symmetric about 0 .

Successive minima

Successive minima

Generalized problem 1
For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

Successive minima

Generalized problem 1
For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\}
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\}
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\}
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\} .
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\} .
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\} .
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\} .
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\} .
$$

$$
\begin{aligned}
& \lambda_{1}\left(\mathbb{Z}^{2}, K\right)=1 / 3 \\
& \lambda_{2}\left(\mathbb{Z}^{2}, K\right)=1 / 3 \\
& \\
& \quad \lambda_{1}\left(\mathbb{Z}^{2}, K^{\prime}\right)=1 / 3 \\
& \lambda_{2}\left(\mathbb{Z}^{2}, K^{\prime}\right)=1 / 2
\end{aligned}
$$

Successive minima

Generalized problem 1

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$, what is the minimum number of k-dimensional linear subspaces needed to cover $\Lambda \cap K$?

- How to measure $|\Lambda \cap K|$?
- For $i=1, \ldots, d$, the i th successive minimum of Λ and K is

$$
\lambda_{i}=\lambda_{i}(\Lambda, K)=\inf \{\lambda \in \mathbb{R}: \operatorname{dim}(\Lambda \cap(\lambda \cdot K)) \geq i\}
$$

$$
\begin{aligned}
& \lambda_{1}\left(\mathbb{Z}^{2}, K\right)=1 / 3 \\
& \lambda_{2}\left(\mathbb{Z}^{2}, K\right)=1 / 3 \\
& \\
& \lambda_{1}\left(\mathbb{Z}^{2}, K^{\prime}\right)=1 / 3 \\
& \lambda_{2}\left(\mathbb{Z}^{2}, K^{\prime}\right)=1 / 2
\end{aligned}
$$

- The successive minima are achieved and $0<\lambda_{1} \leq \cdots \leq \lambda_{d}$.

Covering by hyperplanes $(k=d-1)$

Covering by hyperplanes $(k=d-1)$

Theorem (Bárány, Harcos, Pach, Tardos, 2001)
For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$
O\left(\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}\right)
$$

($d-1$)-dimensional linear subspaces and this is tight if λ_{d} is not close to 1 .

Covering by hyperplanes ($k=d-1$)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$
O\left(\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}\right)
$$

($d-1$)-dimensional linear subspaces and this is tight if λ_{d} is not close to 1 .

- For $\Lambda=\mathbb{Z}^{d}$ and $K=[-n, n]^{d}$, we have $\lambda_{1}=\cdots=\lambda_{d}=1 / n$ and thus $j=1$, which gives the $\Theta\left(n^{d /(d-1)}\right)$ bound.

Covering by hyperplanes $(k=d-1)$

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$
O\left(\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}\right)
$$

($d-1$)-dimensional linear subspaces and this is tight if λ_{d} is not close to 1 .

- For $\Lambda=\mathbb{Z}^{d}$ and $K=[-n, n]^{d}$, we have $\lambda_{1}=\cdots=\lambda_{d}=1 / n$ and thus $j=1$, which gives the $\Theta\left(n^{d /(d-1)}\right)$ bound.
- The assumption $\lambda_{d} \leq 1$ is necessary:

Covering by hyperplanes ($k=d-1$)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$
O\left(\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}\right)
$$

($d-1$)-dimensional linear subspaces and this is tight if λ_{d} is not close to 1 .

- For $\Lambda=\mathbb{Z}^{d}$ and $K=[-n, n]^{d}$, we have $\lambda_{1}=\cdots=\lambda_{d}=1 / n$ and thus $j=1$, which gives the $\Theta\left(n^{d /(d-1)}\right)$ bound.
- The assumption $\lambda_{d} \leq 1$ is necessary:

Covering by hyperplanes ($k=d-1$)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$
O\left(\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}\right)
$$

($d-1$)-dimensional linear subspaces and this is tight if λ_{d} is not close to 1 .

- For $\Lambda=\mathbb{Z}^{d}$ and $K=[-n, n]^{d}$, we have $\lambda_{1}=\cdots=\lambda_{d}=1 / n$ and thus $j=1$, which gives the $\Theta\left(n^{d /(d-1)}\right)$ bound.
- The assumption $\lambda_{d} \leq 1$ is necessary:

Covering by hyperplanes ($k=d-1$)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$
O\left(\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}\right)
$$

($d-1$)-dimensional linear subspaces and this is tight if λ_{d} is not close to 1 .

- For $\Lambda=\mathbb{Z}^{d}$ and $K=[-n, n]^{d}$, we have $\lambda_{1}=\cdots=\lambda_{d}=1 / n$ and thus $j=1$, which gives the $\Theta\left(n^{d /(d-1)}\right)$ bound.
- The assumption $\lambda_{d} \leq 1$ is necessary:

Covering by hyperplanes ($k=d-1$)

Theorem (Bárány, Harcos, Pach, Tardos, 2001)

For $\Lambda \in \mathcal{L}^{d}$ and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with at most

$$
O\left(\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}\right)
$$

($d-1$)-dimensional linear subspaces and this is tight if λ_{d} is not close to 1 .

- For $\Lambda=\mathbb{Z}^{d}$ and $K=[-n, n]^{d}$, we have $\lambda_{1}=\cdots=\lambda_{d}=1 / n$ and thus $j=1$, which gives the $\Theta\left(n^{d /(d-1)}\right)$ bound.
- The assumption $\lambda_{d} \leq 1$ is necessary:

- We consider Generalized problem 1 for general k.

Our results - covering by linear subspaces

Our results - covering by linear subspaces

Theorem 1

For k with $1 \leq k \leq d-1, \Lambda \in \mathcal{L}^{d}$, and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, we can cover $\Lambda \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where

$$
\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)} .
$$

Our results - covering by linear subspaces

Theorem 1

For k with $1 \leq k \leq d-1, \Lambda \in \mathcal{L}^{d}$, and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, we can cover $\Lambda \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where

$$
\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}
$$

- Using probabilistic method, we can also show the following lower bound.

Our results - covering by linear subspaces

Theorem 1

For k with $1 \leq k \leq d-1, \Lambda \in \mathcal{L}^{d}$, and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, we can cover $\Lambda \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where

$$
\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}
$$

- Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with $1 \leq k \leq d-1, \Lambda \in \mathcal{L}^{d}, K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, and $\varepsilon \in(0,1)$, we need at least $\Omega\left(\left(\left(1-\lambda_{d}\right) \beta\right)^{d-k-\varepsilon}\right) k$-dimensional linear subspaces to cover $\Lambda \cap K$, where

$$
\beta=\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)} .
$$

Our results - covering by linear subspaces

Theorem 1

For k with $1 \leq k \leq d-1, \Lambda \in \mathcal{L}^{d}$, and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, we can cover $\Lambda \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where

$$
\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}
$$

- Using probabilistic method, we can also show the following lower bound.

Theorem 2

For k with $1 \leq k \leq d-1, \Lambda \in \mathcal{L}^{d}, K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, and $\varepsilon \in(0,1)$, we need at least $\Omega\left(\left(\left(1-\lambda_{d}\right) \beta\right)^{d-k-\varepsilon}\right) k$-dimensional linear subspaces to cover $\Lambda \cap K$, where

$$
\beta=\min _{1 \leq j \leq d-1}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)} .
$$

- The bounds are not tight. The lower bound can be improved?

Our results - covering by affine subspaces

Our results - covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:

Our results - covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \leq k \leq d-1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O\left(n^{d(d-k) /(d-1)}\right) k$-dimensional linear subspaces and for every $\varepsilon>0$ we need at least $\Omega\left(n^{d(d-k) /(d-1)-\varepsilon}\right) k$-dimensional linear subspaces to cover it.

Our results - covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \leq k \leq d-1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O\left(n^{d(d-k) /(d-1)}\right) k$-dimensional linear subspaces and for every $\varepsilon>0$ we need at least $\Omega\left(n^{d(d-k) /(d-1)-\varepsilon}\right) k$-dimensional linear subspaces to cover it.

- We also consider the problem of covering $\Lambda \cap K$ with affine subspaces.

Our results - covering by affine subspaces

- The bounds are sufficient to nearly settle Problem 1:

Corollary

For k with $1 \leq k \leq d-1$ and $n \in \mathbb{N}$, the $n \times \cdots \times n$ lattice can be covered with $O\left(n^{d(d-k) /(d-1)}\right) k$-dimensional linear subspaces and for every $\varepsilon>0$ we need at least $\Omega\left(n^{d(d-k) /(d-1)-\varepsilon}\right) k$-dimensional linear subspaces to cover it.

- We also consider the problem of covering $\wedge \cap K$ with affine subspaces.

Theorem 3

For k with $1 \leq k \leq d-1, \Lambda \in \mathcal{L}^{d}$, and $K \in \mathcal{K}^{d}$ with $\lambda_{d} \leq 1$, the set $\Lambda \cap K$ can be covered with

$$
O\left(\left(\lambda_{k+1} \cdots \lambda_{d}\right)^{-1}\right)
$$

k-dimensional affine subspaces and this is tight.

Sketch of the proof of Theorem 1

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

- We use the fact that the larger $\|z\|$ is, the sparser $(\Lambda \cap H(z)) \cap B^{d}$ is.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

- We use the fact that the larger $\|z\|$ is, the sparser $(\Lambda \cap H(z)) \cap B^{d}$ is.

Sketch of the proof of Theorem 1

- We want to cover $\wedge \cap K$ with $O\left(\alpha^{d-k}\right) k$-dimensional linear subspaces, where $\alpha=\min _{1 \leq j \leq k}\left(\lambda_{j} \cdots \lambda_{d}\right)^{-1 /(d-j)}$.
- We show the result for K being the unit ball B^{d}. The result for general $K \in \mathcal{K}^{d}$ then follows by John's Lemma.
- Using Second Minkowski's Theorem, we show that $O\left(\left(\lambda_{k} \cdots \lambda_{d}\right)^{-1}\right)$ k-dimensional linear subspaces are sufficient (i.e., prove the case $j=k$).
- Then we proceed by induction on $d-k=1, \ldots, d-1$.

- We use the fact that the larger $\|z\|$ is, the sparser $(\Lambda \cap H(z)) \cap B^{d}$ is.

Application: bounds for point-hyperplane incidences

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O\left((m n)^{2 / 3}+m+n\right)$ for all P and \mathcal{H}. Moreover, this is tight.

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O\left((m n)^{2 / 3}+m+n\right)$ for all P and \mathcal{H}. Moreover, this is tight.
- For $d \geq 3$ it is trivially at most $m n$

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O\left((m n)^{2 / 3}+m+n\right)$ for all P and \mathcal{H}. Moreover, this is tight.
- For $d \geq 3$ it is trivially at most $m n$ and this is tight!

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O\left((m n)^{2 / 3}+m+n\right)$ for all P and \mathcal{H}. Moreover, this is tight.
- For $d \geq 3$ it is trivially at most $m n$ and this is tight!

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O\left((m n)^{2 / 3}+m+n\right)$ for all P and \mathcal{H}. Moreover, this is tight.
- For $d \geq 3$ it is trivially at most $m n$ and this is tight!
- To avoid this, we forbid $K_{r, r}$ for some fixed r in the incidence graph.

Application: bounds for point-hyperplane incidences

- An incidence between an n-point set $P \subseteq \mathbb{R}^{d}$ and a set of m hyperplanes \mathcal{H} in \mathbb{R}^{d} is a pair (p, H) such that $p \in P, H \in \mathcal{H}$, and $p \in H$.
- What is the maximum number of incidences between P and \mathcal{H} in \mathbb{R}^{d} ?

- In the plane, the Szemerédi-Trotter Theorem says that it is at most $O\left((m n)^{2 / 3}+m+n\right)$ for all P and \mathcal{H}. Moreover, this is tight.
- For $d \geq 3$ it is trivially at most $m n$ and this is tight!
- To avoid this, we forbid $K_{r, r}$ for some fixed r in the incidence graph.
- Then the maximum number of incidences is at most $O\left((m n)^{1-1 /(d+1)}+m+n\right)$ (Chazelle, 1993).

Our results - counting point-hyperplane incidences

Our results - counting point-hyperplane incidences

- There is no matching lower bound.

Our results - counting point-hyperplane incidences

- There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For $d \geq 3, \varepsilon>0$ there is an r such that for all n and m there is a set P of n points in \mathbb{R}^{d} and a set \mathcal{H} of m hyperplanes in \mathbb{R}^{d} with no $K_{r, r}$ in the incidence graph and with the number of incidences at least

$$
\begin{array}{lr}
\Omega\left((m n)^{1-2 /(d+3)-\varepsilon}\right) & \text { if } d \text { is odd and } d>3, \\
\Omega\left((m n)^{1-2(d+1) /(d+2)^{2}-\varepsilon}\right) & \text { if } d \text { is even, } \\
\Omega\left((m n)^{7 / 10}\right) & \text { if } d=3 .
\end{array}
$$

Our results - counting point-hyperplane incidences

- There is no matching lower bound.

Theorem (Brass and Knauer, 2003)

For $d \geq 3, \varepsilon>0$ there is an r such that for all n and m there is a set P of n points in \mathbb{R}^{d} and a set \mathcal{H} of m hyperplanes in \mathbb{R}^{d} with no $K_{r, r}$ in the incidence graph and with the number of incidences at least

$$
\begin{array}{lr}
\Omega\left((m n)^{1-2 /(d+3)-\varepsilon}\right) & \text { if } d \text { is odd and } d>3, \\
\Omega\left((m n)^{1-2(d+1) /(d+2)^{2}-\varepsilon}\right) & \text { if } d \text { is even, } \\
\Omega\left((m n)^{7 / 10}\right) & \text { if } d=3 .
\end{array}
$$

- For $d \geq 4$, we improve these bounds to

$$
\begin{array}{ll}
\Omega\left((m n)^{1-(2 d+3) /((d+2)(d+3))-\varepsilon}\right) & \text { if } d \text { is odd, } \\
\Omega\left((m n)^{1-\left(2 d^{2}+d-2\right) /\left((d+2)\left(d^{2}+2 d-2\right)\right)-\varepsilon}\right) & \text { if } d \text { is even. }
\end{array}
$$

Final remarks

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.
- It is the first improvement in the last 13 years.

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:
- Close the gap between estimates from Theorem 1 and Theorem 2.

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:
- Close the gap between estimates from Theorem 1 and Theorem 2.
- For $1<k<d-1$, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^{d} \cap[-n, n]^{d}$ of size $\Omega\left(n^{d(d-k) /(d-1)}\right)$ such that no k-dimensional linear subspace contains r points from R.

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:
- Close the gap between estimates from Theorem 1 and Theorem 2.
- For $1<k<d-1$, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^{d} \cap[-n, n]^{d}$ of size $\Omega\left(n^{d(d-k) /(d-1)}\right)$ such that no k-dimensional linear subspace contains r points from R.
- Improve the bounds for the maximum number of point-hyperplane incidences.

Final remarks

- The gap in the exponents is of order $\Theta(1 / d)$ and the improvement is of order $\Theta\left(1 / d^{2}\right)$.
- It is the first improvement in the last 13 years.
- It provides the best known lower bound for so-called Semialgebraic Zarankiewicz's problem.
- Open problems:
- Close the gap between estimates from Theorem 1 and Theorem 2.
- For $1<k<d-1$, some fixed $r \in \mathbb{N}$, and an arbitrarily large $n \in \mathbb{N}$, construct a set $R \subseteq \mathbb{Z}^{d} \cap[-n, n]^{d}$ of size $\Omega\left(n^{d(d-k) /(d-1)}\right)$ such that no k-dimensional linear subspace contains r points from R.
- Improve the bounds for the maximum number of point-hyperplane incidences.

