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Graph drawings

In a drawing of a graph, vertices are points in the plane and edges are
simple continuous arcs.

Forbidden:

A drawing is pseudolinear if its edges can be extended to form an
arrangement of pseudolines.

A drawing is rectilinear if its edges are straight line segments.

Every rectilinear drawing is pseudolinear.

We assume that all pseudolinear drawings are x-monotone.
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Graph drawings

In a drawing of a graph, vertices are points in the plane and edges are
simple continuous arcs.

Forbidden:

Infinitely many pointsPassing through
vertices in common

A drawing is pseudolinear if its edges can be extended to form an
arrangement of pseudolines.
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In a drawing of a graph, vertices are points in the plane and edges are
simple continuous arcs.
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Edges touchingInfinitely many pointsPassing through
vertices in common

A drawing is pseudolinear if its edges can be extended to form an
arrangement of pseudolines.

A drawing is rectilinear if its edges are straight line segments.

Every rectilinear drawing is pseudolinear.

We assume that all pseudolinear drawings are x-monotone.
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Graph drawings

In a drawing of a graph, vertices are points in the plane and edges are
simple continuous arcs.
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Crossing numbers

Let G be a graph and D be its drawing.

A crossing in D is a common interior point of two edges in D.

Let cr(D) be the number of crossings in D.

Pseudolinear crossing number c̃r(G ) is min cr(D) over pseudolinear D.

Rectilinear crossing number cr(G ) is min cr(D) over rectilinear D.

We have c̃r(G ) ≤ cr(G ) for every G .



Crossing numbers

Let G be a graph and D be its drawing.

A crossing in D is a common interior point of two edges in D.

Let cr(D) be the number of crossings in D.

Pseudolinear crossing number c̃r(G ) is min cr(D) over pseudolinear D.

Rectilinear crossing number cr(G ) is min cr(D) over rectilinear D.

We have c̃r(G ) ≤ cr(G ) for every G .



Crossing numbers

Let G be a graph and D be its drawing.

A crossing in D is a common interior point of two edges in D.

Let cr(D) be the number of crossings in D.

Pseudolinear crossing number c̃r(G ) is min cr(D) over pseudolinear D.

Rectilinear crossing number cr(G ) is min cr(D) over rectilinear D.

We have c̃r(G ) ≤ cr(G ) for every G .



Crossing numbers

Let G be a graph and D be its drawing.

A crossing in D is a common interior point of two edges in D.

Let cr(D) be the number of crossings in D.

Pseudolinear crossing number c̃r(G ) is min cr(D) over pseudolinear D.

Rectilinear crossing number cr(G ) is min cr(D) over rectilinear D.

We have c̃r(G ) ≤ cr(G ) for every G .



Crossing numbers

Let G be a graph and D be its drawing.

A crossing in D is a common interior point of two edges in D.

Let cr(D) be the number of crossings in D.
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Crossing numbers

Let G be a graph and D be its drawing.

A crossing in D is a common interior point of two edges in D.

Let cr(D) be the number of crossings in D.
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Crossing numbers

Let G be a graph and D be its drawing.

A crossing in D is a common interior point of two edges in D.

Let cr(D) be the number of crossings in D.

cr(D) = 3D

Pseudolinear crossing number c̃r(G ) is min cr(D) over pseudolinear D.

Rectilinear crossing number cr(G ) is min cr(D) over rectilinear D.

We have c̃r(G ) ≤ cr(G ) for every G .



Bounds for cr(Kn) and c̃r(Kn)

Problem

What are the leading constants in c̃r(Kn) and cr(Kn)?

The current best lower bound: cr(Kn) ≥ c̃r(Kn) > 0.379972
(
n
4

)
− O(n3)

[Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]

Bounding cr(Kn) from above has attracted a lot of attention.

cr(Kn) < 0.380559
(
n
4

)
+ O(n3) [Ábrego, Fernández-Merchant (2007)]

cr(Kn) < 0.380488
(
n
4

)
+ O(n3) [Ábrego, Cetina, Fernández-Merchant,

Leaños, Salazar (2010)]
cr(Kn) < 0.380473

(
n
4

)
+ O(n3) [Fabila-Monroy, López (2014)]

All upper bounds on c̃r(Kn) follow from upper bounds on cr(Kn).
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cr(Kn): Aichholzer



Main result

Theorem

For every positive integer n, we have

c̃r(Kn) < 0.380448

(
n

4

)
+ O(n3).

42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99
0.38045

0.38050

0.38055

0.38060

0.38065

0.38070 cr(Kn): Ábrego et al.
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Representation of pseudolinear drawings of Kn I

An n-signature is a function σ :
(

[n]
3

)
→ {+,−}.

An n-signature σ is realized by a pseudolinear drawing D of Kn if

An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
For 1 ≤ i < j < k < l ≤ n, the form of the 4-tuple {i , j , k , l} in σ is

σ(i , j , k)σ(i , j , l)σ(i , k , `)σ(j , k , l)
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Representation of pseudolinear drawings of Kn I

An n-signature is a function σ :
(
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3

)
→ {+,−}.

An n-signature σ is realized by a pseudolinear drawing D of Kn if
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σ(i , j , k)σ(i , j , l)σ(i , k , `)σ(j , k , l)

−−++
v1 v2

v3 v4 v5



Representation of pseudolinear drawings of Kn II

Theorem [B., Fulek, Kynčl (2013)]

An n-signature σ is realizable if and only if every 4-tuple from
([n]

4

)
is of one of the

forms ++++, +++−, ++−−, +−−−, −−−−, −−−+, −−++, −+++ in σ.
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Obtaining new drawings of Kn via simulated annealing

To prove the main result, we use random perturbations.

A switch of a sign σ(i , j , k) is change of this sign to the opposite value.

Let σ0 be a given realizable n-signature realized by Dσ0 .

In step i , switch a random switchable triple in σi−1 and proceed to σi .

A triple {i , j , k} ∈
(

[n]
3

)
is switchable in σi if σi is realizable after

the switch of σ(i , j , k).
There is always a switchable triple and all switchable triples in σi
can be found in time O(n).

Accept a switch with probability exp{min{0, (cr(Dσi
)− cr(Dσi+1

))/Ti}}
depending on a parameter Ti ∈ R+.

Use of the simulated annealing method [Kirkpatrick, Gellat, Vecchi
(1983) and Černý (1985)].
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New drawings of Kn

n Previously best Currently best

42 40 590 40 588
44 49 370 49 366
46 59 463 59 459
48 71 010 71 007
50 84 223 84 219
52 99 161 99 158
54 115 975 115 953
56 134 917 134 901
57 145 164 145 158
58 156 042 156 040
59 167 506 167 490
60 179 523 179 514
63 219 659 219 637
64 234 447 234 441
65 249 962 249 938
66 266 151 266 142
67 283 238 283 230
68 301 057 301 043
69 319 691 319 679
70 339 252 339 241
71 359 645 359 635
72 380 925 380 900

n Previously best Currently best

73 403 180 403 166
74 426 398 426 391
76 475 773 475 758
77 502 011 501 997
78 529 278 529 242
79 557 741 557 723
80 587 280 587 251
81 617 930 617 908
83 682 976 682 958
84 717 276 717 222
85 752 971 752 963
86 789 911 789 892
87 828 125 828 107
88 867 887 867 862
89 908 940 908 914
90 951 379 951 323
91 995 478 995 430
92 1 040 946 1 040 897
93 1 087 899 1 087 843
94 1 136 586 1 136 565
96 1 238 646 1 238 490
99 1 404 552 1 404 386
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Blown-up drawings of Kn

To bound c̃r(Kn), we generalized (and implemented) the known

blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

Let D be a pseudolinear drawing of Kn0 that contains a halving matching.
Then there is a pseudolinear drawing D ′ of K2n0 that contains a halving
matching and satisfies

cr(D ′) = 16 cr(D) + 2n0

(⌈n0

2

⌉2

+
⌊n0

2

⌋2
)
− 7n2

0

2
+

5n0

2
.
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Conclusion

Using the blowing-up technique, we found a pseudolinear drawing of
K216 with 33 260 204 crossings, which gives us the leading constant

120 772 213

317 447 424
∼ 0.380448.

Future work:

Further improve the bounds on c̃r(Kn).
Check whether some of the new drawings are stretchable.
Employ faster algorithms, a representation by rotation systems, and
advanced annealing methods.

Thank you.
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