Bounding the pseudolinear crossing number of K_{n} via simulated annealing

Martin Balko, and Jan Kynčl

Charles University in Prague, Czech Republic

July 1, 2015

Graph drawings

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through vertices

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through Infinitely many points vertices
in common

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through Infinitely many points Edges touching vertices
in common

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through Infinitely many points Edges touching Multiple crossings vertices
in common

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through Infinitely many points Edges touching Multiple crossings vertices
in common

- A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through Infinitely many points Edges touching Multiple crossings vertices
in common

- A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.
- A drawing is rectilinear if its edges are straight line segments.

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through Infinitely many points Edges touching Multiple crossings vertices
in common

- A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.
- A drawing is rectilinear if its edges are straight line segments.
- Every rectilinear drawing is pseudolinear.

Graph drawings

- In a drawing of a graph, vertices are points in the plane and edges are simple continuous arcs.
- Forbidden:

Passing through Infinitely many points Edges touching Multiple crossings vertices in common

- A drawing is pseudolinear if its edges can be extended to form an arrangement of pseudolines.
- A drawing is rectilinear if its edges are straight line segments.
- Every rectilinear drawing is pseudolinear.
- We assume that all pseudolinear drawings are x-monotone.

Crossing numbers

Crossing numbers

- Let G be a graph and D be its drawing.

Crossing numbers

- Let G be a graph and D be its drawing.
- A crossing in D is a common interior point of two edges in D.

Crossing numbers

- Let G be a graph and D be its drawing.
- A crossing in D is a common interior point of two edges in D.
- Let $\operatorname{cr}(D)$ be the number of crossings in D.

Crossing numbers

- Let G be a graph and D be its drawing.
- A crossing in D is a common interior point of two edges in D.
- Let $\operatorname{cr}(D)$ be the number of crossings in D.

Crossing numbers

- Let G be a graph and D be its drawing.
- A crossing in D is a common interior point of two edges in D.
- Let $\operatorname{cr}(D)$ be the number of crossings in D.

$$
\operatorname{cr}(D)=3
$$

Crossing numbers

- Let G be a graph and D be its drawing.
- A crossing in D is a common interior point of two edges in D.
- Let $\operatorname{cr}(D)$ be the number of crossings in D.

$$
\operatorname{cr}(D)=3
$$

- Pseudolinear crossing number $\widetilde{c r}(G)$ is $\min \operatorname{cr}(D)$ over pseudolinear D.

Crossing numbers

- Let G be a graph and D be its drawing.
- A crossing in D is a common interior point of two edges in D.
- Let $\operatorname{cr}(D)$ be the number of crossings in D.

$$
\operatorname{cr}(D)=3
$$

- Pseudolinear crossing number $\widetilde{c r}(G)$ is $\min \operatorname{cr}(D)$ over pseudolinear D.
- Rectilinear crossing number $\overline{\operatorname{cr}}(G)$ is $\min \operatorname{cr}(D)$ over rectilinear D.

Crossing numbers

- Let G be a graph and D be its drawing.
- A crossing in D is a common interior point of two edges in D.
- Let $\operatorname{cr}(D)$ be the number of crossings in D.

$$
\operatorname{cr}(D)=3
$$

- Pseudolinear crossing number $\widetilde{c}(G)$ is $\min \operatorname{cr}(D)$ over pseudolinear D.
- Rectilinear crossing number $\overline{\operatorname{cr}}(G)$ is $\min \operatorname{cr}(D)$ over rectilinear D.
- We have $\widetilde{\operatorname{cr}}(G) \leq \overline{\operatorname{cr}}(G)$ for every G.

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{c r}\left(K_{n}\right)$

Problem

What are the leading constants in $\widetilde{\operatorname{cr}}\left(K_{n}\right)$ and $\operatorname{cr}\left(K_{n}\right)$?

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$

Problem

What are the leading constants in $\widetilde{c r}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$?

- The current best lower bound: $\overline{\operatorname{cr}}\left(K_{n}\right) \geq \widetilde{\operatorname{cr}}\left(K_{n}\right)>0.379972\binom{n}{4}-O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$

Problem

What are the leading constants in $\widetilde{\operatorname{cr}}\left(K_{n}\right)$ and $\operatorname{cr}\left(K_{n}\right)$?

- The current best lower bound: $\overline{\operatorname{cr}}\left(K_{n}\right) \geq \widetilde{\operatorname{cr}}\left(K_{n}\right)>0.379972\binom{n}{4}-O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}\left(K_{n}\right)$ from above has attracted a lot of attention.

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$

Problem

What are the leading constants in $\widetilde{\operatorname{cr}}\left(K_{n}\right)$ and $\overline{\operatorname{cr}}\left(K_{n}\right)$?

- The current best lower bound: $\overline{\operatorname{cr}}\left(K_{n}\right) \geq \widetilde{\operatorname{cr}}\left(K_{n}\right)>0.379972\binom{n}{4}-O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}\left(K_{n}\right)$ from above has attracted a lot of attention.
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380559\binom{n}{4}+O\left(n^{3}\right)$ [Ábrego, Fernández-Merchant (2007)]

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$

Problem

What are the leading constants in $\widetilde{\operatorname{cr}}\left(K_{n}\right)$ and $\operatorname{cr}\left(K_{n}\right)$?

- The current best lower bound: $\overline{\operatorname{cr}}\left(K_{n}\right) \geq \widetilde{\operatorname{cr}}\left(K_{n}\right)>0.379972\binom{n}{4}-O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}\left(K_{n}\right)$ from above has attracted a lot of attention.
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380559\binom{n}{4}+O\left(n^{3}\right)$ [Ábrego, Fernández-Merchant (2007)]
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380488\binom{n}{4}+O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2010)]

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$

Problem

What are the leading constants in $\widetilde{\operatorname{cr}}\left(K_{n}\right)$ and $\operatorname{cr}\left(K_{n}\right)$?

- The current best lower bound: $\overline{\operatorname{cr}}\left(K_{n}\right) \geq \widetilde{\operatorname{cr}}\left(K_{n}\right)>0.379972\binom{n}{4}-O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}\left(K_{n}\right)$ from above has attracted a lot of attention.
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380559\binom{n}{4}+O\left(n^{3}\right)$ [Ábrego, Fernández-Merchant (2007)]
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380488\binom{n}{4}+O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2010)]
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380473\binom{n}{4}+O\left(n^{3}\right)$ [Fabila-Monroy, López (2014)]

Bounds for $\overline{\operatorname{cr}}\left(K_{n}\right)$ and $\widetilde{\operatorname{cr}}\left(K_{n}\right)$

Problem

What are the leading constants in $\widetilde{\operatorname{cr}}\left(K_{n}\right)$ and $\operatorname{cr}\left(K_{n}\right)$?

- The current best lower bound: $\overline{\operatorname{cr}}\left(K_{n}\right) \geq \widetilde{\operatorname{cr}}\left(K_{n}\right)>0.379972\binom{n}{4}-O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2012)]
- Bounding $\overline{\operatorname{cr}}\left(K_{n}\right)$ from above has attracted a lot of attention.
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380559\binom{n}{4}+O\left(n^{3}\right)$ [Ábrego, Fernández-Merchant (2007)]
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380488\binom{n}{4}+O\left(n^{3}\right)$ [Ábrego, Cetina, Fernández-Merchant, Leaños, Salazar (2010)]
- $\overline{\operatorname{cr}}\left(K_{n}\right)<0.380473\binom{n}{4}+O\left(n^{3}\right)$ [Fabila-Monroy, López (2014)]
- All upper bounds on $\widetilde{\mathrm{cr}}\left(K_{n}\right)$ follow from upper bounds on $\overline{\operatorname{cr}}\left(K_{n}\right)$.

Main result

Main result

Theorem

For every positive integer n, we have

$$
\widetilde{\operatorname{cr}}\left(K_{n}\right)<0.380448\binom{n}{4}+O\left(n^{3}\right) .
$$

Main result

Theorem

For every positive integer n, we have

$$
\widetilde{\operatorname{cr}}\left(K_{n}\right)<0.380448\binom{n}{4}+O\left(n^{3}\right) .
$$

Main result

Theorem

For every positive integer n, we have

$$
\widetilde{\operatorname{cr}}\left(K_{n}\right)<0.380448\binom{n}{4}+O\left(n^{3}\right) .
$$

Main result

Theorem

For every positive integer n, we have

$$
\widetilde{\operatorname{cr}}\left(K_{n}\right)<0.380448\binom{n}{4}+O\left(n^{3}\right) .
$$

Main result

Theorem

For every positive integer n, we have

$$
\widetilde{\operatorname{cr}}\left(K_{n}\right)<0.380448\binom{n}{4}+O\left(n^{3}\right) .
$$

Representation of pseudolinear drawings of K_{n} I

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

$\sigma(i, j, k)=+$

Representation of pseudolinear drawings of $K_{n} I$

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

$\sigma(i, j, k)=+$
- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, I\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of $K_{n} I$

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of K_{n} I

- An n-signature is a function $\sigma:\binom{[n]}{3} \rightarrow\{+,-\}$.
- An n-signature σ is realized by a pseudolinear drawing D of K_{n} if

- An n-signature σ is realizable, if there is a pseudolinear D realizing σ.
- For $1 \leq i<j<k<I \leq n$, the form of the 4-tuple $\{i, j, k, l\}$ in σ is

$$
\sigma(i, j, k) \sigma(i, j, l) \sigma(i, k, \ell) \sigma(j, k, l)
$$

Representation of pseudolinear drawings of K_{n} II

Representation of pseudolinear drawings of K_{n} II

Theorem [B., Fulek, Kynčl (2013)]

An n-signature σ is realizable if and only if every 4 -tuple from $\binom{[n]}{4}$ is of one of the forms,,,,,,,+++++++-++--+----------+--++-+++ in σ.

Representation of pseudolinear drawings of K_{n} II

Theorem [B., Fulek, Kynčl (2013)]

An n-signature σ is realizable if and only if every 4-tuple from $\binom{[n]}{4}$ is of one of the forms,,,,,,,+++++++-++--+----------+--++-+++ in σ.

Representation of pseudolinear drawings of K_{n} II

Theorem [B., Fulek, Kynčl (2013)]

An n-signature σ is realizable if and only if every 4-tuple from $\binom{[n]}{4}$ is of one of the forms,,,,,,,+++++++-++--+----------+--++-+++ in σ.

Representation of pseudolinear drawings of K_{n} II

Theorem [B., Fulek, Kynčl (2013)]

An n-signature σ is realizable if and only if every 4-tuple from $\binom{[n]}{4}$ is of one of the forms,,,,,,,+++++++-++--+----------+--++-+++ in σ.

Obtaining new drawings of K_{n} via simulated annealing

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_{0} be a given realizable n-signature realized by $D_{\sigma_{0}}$.

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_{0} be a given realizable n-signature realized by $D_{\sigma_{0}}$.
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_{i}.

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_{0} be a given realizable n-signature realized by $D_{\sigma_{0}}$.
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_{i}.
- A triple $\{i, j, k\} \in\binom{[n]}{3}$ is switchable in σ_{i} if σ_{i} is realizable after the switch of $\sigma(i, j, k)$.

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_{0} be a given realizable n-signature realized by $D_{\sigma_{0}}$.
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_{i}.
- A triple $\{i, j, k\} \in\binom{[n]}{3}$ is switchable in σ_{i} if σ_{i} is realizable after the switch of $\sigma(i, j, k)$.
- There is always a switchable triple and all switchable triples in σ_{i} can be found in time $O(n)$.

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_{0} be a given realizable n-signature realized by $D_{\sigma_{0}}$.
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_{i}.
- A triple $\{i, j, k\} \in\binom{[n]}{3}$ is switchable in σ_{i} if σ_{i} is realizable after the switch of $\sigma(i, j, k)$.
- There is always a switchable triple and all switchable triples in σ_{i} can be found in time $O(n)$.
- Accept a switch with probability $\exp \left\{\min \left\{0,\left(\operatorname{cr}\left(D_{\sigma_{i}}\right)-\operatorname{cr}\left(D_{\sigma_{i+1}}\right)\right) / T_{i}\right\}\right\}$ depending on a parameter $T_{i} \in \mathbb{R}^{+}$.

Obtaining new drawings of K_{n} via simulated annealing

- To prove the main result, we use random perturbations.
- A switch of a sign $\sigma(i, j, k)$ is change of this sign to the opposite value.
- Let σ_{0} be a given realizable n-signature realized by $D_{\sigma_{0}}$.
- In step i, switch a random switchable triple in σ_{i-1} and proceed to σ_{i}.
- A triple $\{i, j, k\} \in\binom{[n]}{3}$ is switchable in σ_{i} if σ_{i} is realizable after the switch of $\sigma(i, j, k)$.
- There is always a switchable triple and all switchable triples in σ_{i} can be found in time $O(n)$.
- Accept a switch with probability $\exp \left\{\min \left\{0,\left(\operatorname{cr}\left(D_{\sigma_{i}}\right)-\operatorname{cr}\left(D_{\sigma_{i+1}}\right)\right) / T_{i}\right\}\right\}$ depending on a parameter $T_{i} \in \mathbb{R}^{+}$.
- Use of the simulated annealing method [Kirkpatrick, Gellat, Vecchi (1983) and Černý (1985)].

New drawings of K_{n}

New drawings of K_{n}

n	Previously best	Currently best
42	40590	40588
44	49370	49366
46	59463	59459
48	71010	71007
50	84223	84219
52	99161	99158
54	115975	115953
56	134917	134901
57	145164	145158
58	156042	156040
59	167506	167490
60	179523	179514
63	219659	219637
64	234447	234441
65	249962	249938
66	266151	266142
67	283238	283230
68	301057	301043
69	319691	319679
70	339252	339241
71	359645	359635
72	380925	380900

n	Previously best	Currently best
73	403180	403166
74	426398	426391
76	475773	475758
77	502011	501997
78	529278	529242
79	557741	557723
80	587280	587251
81	617930	617908
83	682976	682958
84	717276	717222
85	752971	752963
86	789911	789892
87	828125	828107
88	867887	867862
89	908940	908914
90	951379	951323
91	995478	995430
92	1040946	1040897
93	1087899	1087843
94	1136586	1136565
96	1238646	1238490
99	1404552	1404386

Blown-up drawings of K_{n}

Blown-up drawings of K_{n}

- To bound $\widetilde{\operatorname{cr}}\left(K_{n}\right)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Blown-up drawings of K_{n}

- To bound $\widetilde{\operatorname{cr}}\left(K_{n}\right)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

Let D be a pseudolinear drawing of $K_{n_{0}}$ that contains a halving matching. Then there is a pseudolinear drawing D^{\prime} of $K_{2 n_{0}}$ that contains a halving matching and satisfies

$$
\operatorname{cr}\left(D^{\prime}\right)=16 \operatorname{cr}(D)+2 n_{0}\left(\left\lceil\frac{n_{0}}{2}\right\rceil^{2}+\left\lfloor\frac{n_{0}}{2}\right\rfloor^{2}\right)-\frac{7 n_{0}^{2}}{2}+\frac{5 n_{0}}{2} .
$$

Blown-up drawings of K_{n}

- To bound $\widetilde{\operatorname{cr}}\left(K_{n}\right)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

Let D be a pseudolinear drawing of $K_{n_{0}}$ that contains a halving matching. Then there is a pseudolinear drawing D^{\prime} of $K_{2 n_{0}}$ that contains a halving matching and satisfies

$$
\operatorname{cr}\left(D^{\prime}\right)=16 \operatorname{cr}(D)+2 n_{0}\left(\left\lceil\frac{n_{0}}{2}\right\rceil^{2}+\left\lfloor\frac{n_{0}}{2}\right\rfloor^{2}\right)-\frac{7 n_{0}^{2}}{2}+\frac{5 n_{0}}{2} .
$$

a)

Blown-up drawings of K_{n}

- To bound $\widetilde{\operatorname{cr}}\left(K_{n}\right)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

Let D be a pseudolinear drawing of $K_{n_{0}}$ that contains a halving matching. Then there is a pseudolinear drawing D^{\prime} of $K_{2 n_{0}}$ that contains a halving matching and satisfies

$$
\operatorname{cr}\left(D^{\prime}\right)=16 \operatorname{cr}(D)+2 n_{0}\left(\left\lceil\frac{n_{0}}{2}\right\rceil^{2}+\left\lfloor\frac{n_{0}}{2}\right\rfloor^{2}\right)-\frac{7 n_{0}^{2}}{2}+\frac{5 n_{0}}{2} .
$$

a)

Blown-up drawings of K_{n}

- To bound $\widetilde{\operatorname{cr}}\left(K_{n}\right)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

Let D be a pseudolinear drawing of $K_{n_{0}}$ that contains a halving matching. Then there is a pseudolinear drawing D^{\prime} of $K_{2 n_{0}}$ that contains a halving matching and satisfies

$$
\operatorname{cr}\left(D^{\prime}\right)=16 \operatorname{cr}(D)+2 n_{0}\left(\left\lceil\frac{n_{0}}{2}\right\rceil^{2}+\left\lfloor\frac{n_{0}}{2}\right\rfloor^{2}\right)-\frac{7 n_{0}^{2}}{2}+\frac{5 n_{0}}{2} .
$$

a)

b)

Blown-up drawings of K_{n}

- To bound $\widetilde{\operatorname{cr}}\left(K_{n}\right)$, we generalized (and implemented) the known blowing-up technique [Ábrego, Fernández-Merchant (2007)].

Proposition

Let D be a pseudolinear drawing of $K_{n_{0}}$ that contains a halving matching. Then there is a pseudolinear drawing D^{\prime} of $K_{2 n_{0}}$ that contains a halving matching and satisfies

$$
\operatorname{cr}\left(D^{\prime}\right)=16 \operatorname{cr}(D)+2 n_{0}\left(\left\lceil\frac{n_{0}}{2}\right\rceil^{2}+\left\lfloor\frac{n_{0}}{2}\right\rfloor^{2}\right)-\frac{7 n_{0}^{2}}{2}+\frac{5 n_{0}}{2} .
$$

Conclusion

Conclusion

- Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33260204 crossings, which gives us the leading constant

$$
\frac{120772213}{317447424} \sim 0.380448
$$

Conclusion

- Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33260204 crossings, which gives us the leading constant

$$
\frac{120772213}{317447424} \sim 0.380448
$$

- Future work:

Conclusion

- Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33260204 crossings, which gives us the leading constant

$$
\frac{120772213}{317447424} \sim 0.380448
$$

- Future work:
- Further improve the bounds on $\widetilde{c r}\left(K_{n}\right)$.

Conclusion

- Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33260204 crossings, which gives us the leading constant

$$
\frac{120772213}{317447424} \sim 0.380448
$$

- Future work:
- Further improve the bounds on $\widetilde{c r}\left(K_{n}\right)$.
- Check whether some of the new drawings are stretchable.

Conclusion

- Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33260204 crossings, which gives us the leading constant

$$
\frac{120772213}{317447424} \sim 0.380448
$$

- Future work:
- Further improve the bounds on $\widetilde{c r}\left(K_{n}\right)$.
- Check whether some of the new drawings are stretchable.
- Employ faster algorithms, a representation by rotation systems, and advanced annealing methods.

Conclusion

- Using the blowing-up technique, we found a pseudolinear drawing of K_{216} with 33260204 crossings, which gives us the leading constant

$$
\frac{120772213}{317447424} \sim 0.380448
$$

- Future work:
- Further improve the bounds on $\widetilde{c r}\left(K_{n}\right)$.
- Check whether some of the new drawings are stretchable.
- Employ faster algorithms, a representation by rotation systems, and advanced annealing methods.

Thank you.

