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Preliminaries

Theorem (Erdős, Szekeres, 1935)

For each k ∈ N, every sufficiently large point set in general position (no 3 points
are collinear) in the plane contains k points in convex position.

A k-hole in a point set S is a convex polygon with k vertices from S
and with no points of S in its interior.

Every set of 3 points contains a 3-hole. Also, 5 points → 4-hole and 10
points → 5-hole (Harborth, 1978).
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Sets with no large holes

Erdős, 1978: For every k ∈ N, does every large enough point set in
general position contain a k-hole?

No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolás, 2007).
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Erdős, 1978: For every k ∈ N, does every large enough point set in
general position contain a k-hole?

No. There are arbitrarily large point sets with no 7-hole (Horton, 1983).

Every sufficiently large point set in general position contains a 6-hole
(Gerken, 2008 and Nicolás, 2007).



Sets with no large holes
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Counting k-holes

Every sufficiently large set of points in general position contains a k-hole
for k ∈ {3, 4, 5, 6}.
How many k-holes do we always have?

Let hk(n) be the minimum number of k-holes among all sets of n points
in the plane in general position.

The following bounds are known:

h3(n) and h4(n) are in Θ(n2).
hk(n) = 0 for every k ≥ 7 (Horton, 1983).
h5(n) and h6(n) are in Ω(n) and O(n2).

We focus on estimating h5(n).
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Counting 5-holes

It is widely conjectured that h5(n) is quadratic in n.

Conjecture 1

We have h5(n) = Θ(n2).

However, even the following problem was open since the 1980’s.

Conjecture 2

The function h5(n) is superlinear in n.

Several attempts to improve the bounds:

h5(n) ≤ 1.0207n2 + o(n2) (Bárány and Valtr, 2004),
h5(n) ≥ bn/10c (Bárány and Füredi, 1987, Harborth, 1978),
h5(n) ≥ n/6− O(1) (Bárány and Károlyi, 2001)
h5(n) ≥ 3bn−4

8
c (Garćıa, 2012)

h5(n) ≥ d3/7(n − 11)e (Aichholzer, Hackl, Vogtenhuber, 2012)
h5(n) ≥ n/2− O(1) (Valtr, 2012)
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h5(n) ≥ 3bn−4

8
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c (Garćıa, 2012)

h5(n) ≥ d3/7(n − 11)e (Aichholzer, Hackl, Vogtenhuber, 2012)
h5(n) ≥ n/2− O(1) (Valtr, 2012)



Counting 5-holes

It is widely conjectured that h5(n) is quadratic in n.

Conjecture 1

We have h5(n) = Θ(n2).

However, even the following problem was open since the 1980’s.

Conjecture 2

The function h5(n) is superlinear in n.

Several attempts to improve the bounds:

h5(n) ≤ 1.0207n2 + o(n2) (Bárány and Valtr, 2004),
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Our results I

We show that h5(n) is superlinear in n.

Theorem 1

There is a fixed constant c > 0 such that for every integer n ≥ 10 we have

h5(n) ≥ cn log4/5 n.

This proves Conjecture 2. Conjecture 1 is still open.

A point set P = A ∪ B is `-divided if the line ` contains no point of P
and partitions P into two non-empty subsets A and B .
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Our results II

Theorem 1 is a corollary of the following structural result.

Theorem 2

Let P = A ∪ B be an `-divided set with |A|, |B | ≥ 5 and with neither A nor
B in convex position. Then there is a 5-hole in P with points in both A and
B (so-called `-divided 5-hole).

The proof is computer assisted and quite complicated.
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Theorem 2 implies Theorem 1 – preliminaries

An island in a point set P is a subset Q of P with P ∩ conv(Q) = Q.

Note that k-holes in an island of P are also k-holes in P .

We proceed by induction on t = log2 n.

Base case: For t = 55, we have n = 2t > 10 and h5(10) = 1 gives at

least c · n log
4/5
2 n 5-holes in P for c small enough.
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Theorem 2 implies Theorem 1 – induction step

We choose ` to be a line partitioning P into A and B of sizes n/2.
For a parameter r ∈ N, we partition P into n/(2r) `-divided islands
P1, . . . ,Pn/(2r) with |Pi ∩ A|, |Pi ∩ B | = r for every i .
We apply Theorem 2 to each island Pi .
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Theorem 2 implies Theorem 1 – counting

We choose r = log
1/5
2 n = t1/5 ≥ 5.

If Pi ∩ A or Pi ∩ B is in convex position for at least half of the islands:

Since |Pi ∩ A|, |Pi ∩ B | = r , each such island gives
(
r
5

)
5-holes in P .

In total, the number of 5-holes in P is at least

1

2
· n

2r
·
(
r

5

)
≥ c · n log

4/5
2 n.

If Pi ∩ A and Pi ∩ B are not in convex position for at least half of the
islands:

Each such Pi gives an `-divided 5-hole in P .
We proceed inductively on A and B and obtain at least

h5(n/2) + h5(n/2) + n/(4r) ≥ c · n log
4/5
2 n

5-holes in P .
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Sketch of the proof of Theorem 2 – peeling off extremal points

Let P = A ∪ B be an `-divided set with |A|, |B | ≥ 5 and with neither A
nor B in convex position.
Suppose for contradiction, that there is no `-divided 5-hole in P .
The case |A| = 5 = |B | follows from h5(10) = 1 (Harborth, 1978).
We reduce P to an island Q by removing extremal points until either:
|Q ∩ A| = 5 or |Q ∩ B | = 5, or
|Q ∩A|, |Q ∩B | ≥ 6 and Q is `-critical, i.e., for each extremal point
x of Q either (Q ∩ A) \ {x} or (Q ∩ B) \ {x} is in convex position.

The first case is handled by computer.
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Sketch of the proof of Theorem 2 – second case

Let a∗ be the rightmost inner point of Q ∩ A and b∗ be the leftmost
inner point of Q ∩ B .
Rays from a∗ to (Q ∩ A) \ {a∗} partition the plane into a∗-wedges.
Since Q is `-critical, it has a special structure:

There are at most two extremal points of Q in Q ∩ A.
If there are two, then a∗ is the unique interior point in Q ∩ A.
By symmetry, analogous statements hold for Q ∩ B .

No `-divided 5-hole in Q forces several restrictions on numbers of points
from Q ∩ B in a∗-wedges.
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No `-divided 5-hole in Q forces several restrictions on numbers of points
from Q ∩ B in a∗-wedges.
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Sketch of the proof of Theorem 2 – obtaining the contradiction

The restrictions on a∗-wedges imply the following result.

Proposition 1

Let Q be an `-critical set with no `-divided 5-hole in Q, with
|Q ∩A|, |Q ∩B | ≥ 6, and |Q ∩A∩ ∂conv(Q)| = 2. Then |Q ∩B | < |Q ∩A|.

Considering b∗-wedges, we obtain the following statement.

Proposition 2

Let Q be an `-critical set with no `-divided 5-hole in Q, with
|Q ∩A|, |Q ∩B | ≥ 6, and |Q ∩A∩ ∂conv(Q)| = 2. Then |Q ∩A| ≤ |Q ∩B |.

Without loss of generality, we assume |Q ∩ A ∩ ∂conv(Q)| = 2.

Propositions 1 and 2 thus give |Q ∩ B | < |Q ∩ A| ≤ |Q ∩ B |, a
contradiction.
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Computer assisted results

We use four computer assisted results in the proof of Theorem 2.

In each of them, we verify certain statement for sets of ≤ 11 points.

Computer Lemma 1

Let P = A ∪ B be an `-divided set with |A| = 5, |B | = 6, and with A not in
convex position. Then there is an `-divided 5-hole in P .

The search is done by considering all order types of such point sets.

We wrote two independent implementations:

First implementation uses Aichholzer’s database of order types (96
GB of data). Running time: hours.
Second implementation does not use the database, but running
time can take up to weeks (if not run in parallel).
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Final remarks

The assumption |A|, |B | ≥ 5 in Theorem 2 is necessary.
There are arbitrarily large `-divided point sets P = A ∪ B with
|A| = 4 and with no `-divided 5-hole.

Current approach does not work for 6-holes.
Since h6(29) = 0 (Overmars, 2002), the reduction would have to be
to at least 30-point sets, which cannot be handled by computer.

Theorem 2 can be used to improve lower bounds on h3(n) and h4(n):

Theorem 3

We have

h3(n) ≥ n2 + Ω(n log2/3 n) and h4(n) ≥ n2

2
+ Ω(n log3/4 n).

Is it possible to obtain stronger bounds on h5(n) from Theorem 2?

Thank you.
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