A SAT attack on the Erdős-Szekeres conjecture

Martin Balko and Pavel Valtr

Charles University in Prague, Czech Republic

September 4, 2015

The Erdős-Szekeres Theorem

The Erdős-Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)
For every k there is a least number $\operatorname{ES}(k)$ such that every set of $\mathrm{ES}(k)+1$ points in the plane in general position contains k points in convex position.

The Erdős-Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)
For every k there is a least number $\operatorname{ES}(k)$ such that every set of $\mathrm{ES}(k)+1$ points in the plane in general position contains k points in convex position.

The Erdős-Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)
For every k there is a least number $\operatorname{ES}(k)$ such that every set of $\mathrm{ES}(k)+1$ points in the plane in general position contains k points in convex position.

$$
E S(4)=4
$$

The Erdős-Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $\mathrm{ES}(k)$ such that every set of $\mathrm{ES}(k)+1$ points in the plane in general position contains k points in convex position.

$$
E S(4)=4
$$

- A set of a points on a graph of a strictly concave function is an a-cap. A set of u points on a graph of a strictly convex function is a u-cup.

The Erdős-Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $\mathrm{ES}(k)$ such that every set of $\mathrm{ES}(k)+1$ points in the plane in general position contains k points in convex position.

$$
E S(4)=4
$$

- A set of a points on a graph of a strictly concave function is an a-cap. A set of u points on a graph of a strictly convex function is a u-cup.

- In fact, they showed that every set of $\mathrm{N}(a, u)+1=\binom{a+u-4}{a-2}+1$ points in general position contains either an a-cap or a u-cup and this is tight.

The Erdős-Szekeres Conjecture

The Erdős-Szekeres Conjecture

- Trivially, we have

$$
\mathrm{ES}(k) \leq \mathrm{N}(k, k)=\binom{2 k-4}{k-2}
$$

The Erdős-Szekeres Conjecture

- Trivially, we have

$$
\mathrm{ES}(k) \leq \mathrm{N}(k, k)=\binom{2 k-4}{k-2}
$$

- In 1960, Erdős and Szekeres showed $\mathrm{ES}(k) \geq 2^{k-2}$ for every $k \geq 2$.

The Erdős-Szekeres Conjecture

- Trivially, we have

$$
\mathrm{ES}(k) \leq \mathrm{N}(k, k)=\binom{2 k-4}{k-2}
$$

- In 1960, Erdős and Szekeres showed $\mathrm{ES}(k) \geq 2^{k-2}$ for every $k \geq 2$.

Conjecture (Erdős and Szekeres, 1935)

For every $k \geq 2, \mathrm{ES}(k)=2^{k-2}$.

The Erdős-Szekeres Conjecture

- Trivially, we have

$$
\mathrm{ES}(k) \leq \mathrm{N}(k, k)=\binom{2 k-4}{k-2}
$$

- In 1960, Erdős and Szekeres showed $\mathrm{ES}(k) \geq 2^{k-2}$ for every $k \geq 2$.

Conjecture (Erdős and Szekeres, 1935)

For every $k \geq 2, \operatorname{ES}(k)=2^{k-2}$.

- In 2005, Tóth and Valtr showed current best upper bound

$$
\mathrm{ES}(k) \leq\binom{ 2 k-5}{k-2}
$$

The Erdős-Szekeres Conjecture

- Trivially, we have

$$
\mathrm{ES}(k) \leq \mathrm{N}(k, k)=\binom{2 k-4}{k-2}
$$

- In 1960, Erdős and Szekeres showed $\mathrm{ES}(k) \geq 2^{k-2}$ for every $k \geq 2$.

Conjecture (Erdős and Szekeres, 1935)

For every $k \geq 2, \operatorname{ES}(k)=2^{k-2}$.

- In 2005, Tóth and Valtr showed current best upper bound

$$
\mathrm{ES}(k) \leq\binom{ 2 k-5}{k-2}
$$

- The Erdős-Szekeres conjecture is known to hold for $k \leq 6$. For $k=6$ it was shown by Peters and Szekeres using an exhaustive computer search.

General setting

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_{N}^{3} be the complete 3-uniform hypergraph with the vertex set $[N]$.

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_{N}^{3} be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_{1}<\cdots<v_{k}$ of \mathcal{K}_{N}^{3}, the edges $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{2}, v_{3}, v_{4}\right\}, \ldots$, $\left\{v_{k-2}, v_{k-1}, v_{k}\right\}$ form a (monotone) k-path.

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_{N}^{3} be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_{1}<\cdots<v_{k}$ of \mathcal{K}_{N}^{3}, the edges $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{2}, v_{3}, v_{4}\right\}, \ldots$, $\left\{v_{k-2}, v_{k-1}, v_{k}\right\}$ form a (monotone) k-path.

Monotone 5-path

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_{N}^{3} be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_{1}<\cdots<v_{k}$ of \mathcal{K}_{N}^{3}, the edges $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{2}, v_{3}, v_{4}\right\}, \ldots$, $\left\{v_{k-2}, v_{k-1}, v_{k}\right\}$ form a (monotone) k-path.

Monotone 5-path

- A coloring of \mathcal{K}_{N}^{3} assigns either a red or a blue color to every edge of \mathcal{K}_{N}^{3}.

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_{N}^{3} be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_{1}<\cdots<v_{k}$ of \mathcal{K}_{N}^{3}, the edges $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{2}, v_{3}, v_{4}\right\}, \ldots$, $\left\{v_{k-2}, v_{k-1}, v_{k}\right\}$ form a (monotone) k-path.

Monotone 5-path

- A coloring of \mathcal{K}_{N}^{3} assigns either a red or a blue color to every edge of \mathcal{K}_{N}^{3}.
- Let $\widehat{\mathrm{N}}(a, u)$ be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no red a-path and no blue u-path.

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_{N}^{3} be the complete 3 -uniform hypergraph with the vertex set [N].
- For vertices $v_{1}<\cdots<v_{k}$ of \mathcal{K}_{N}^{3}, the edges $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{2}, v_{3}, v_{4}\right\}, \ldots$, $\left\{v_{k-2}, v_{k-1}, v_{k}\right\}$ form a (monotone) k-path.

Monotone 5-path

- A coloring of \mathcal{K}_{N}^{3} assigns either a red or a blue color to every edge of \mathcal{K}_{N}^{3}.
- Let $\widehat{\mathrm{N}}(a, u)$ be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no red a-path and no blue u-path.
- In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively.

General setting

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_{N}^{3} be the complete 3 -uniform hypergraph with the vertex set [N].
- For vertices $v_{1}<\cdots<v_{k}$ of \mathcal{K}_{N}^{3}, the edges $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{2}, v_{3}, v_{4}\right\}, \ldots$, $\left\{v_{k-2}, v_{k-1}, v_{k}\right\}$ form a (monotone) k-path.

Monotone 5-path

- A coloring of \mathcal{K}_{N}^{3} assigns either a red or a blue color to every edge of \mathcal{K}_{N}^{3}.
- Let $\widehat{\mathrm{N}}(a, u)$ be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no red a-path and no blue u-path.
- In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively.
- A straightforward generalization of the proof of Erdős and Szekeres gives

$$
\widehat{\mathrm{N}}(a, u)=\binom{a+u-4}{a-2}=\mathrm{N}(a, u) .
$$

Convexity generalized

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
- A (convex) k-gon is an ordered 3 -uniform hypergraph on k vertices consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
- A (convex) k-gon is an ordered 3 -uniform hypergraph on k vertices consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices.

Convexity generalized

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
- A (convex) k-gon is an ordered 3 -uniform hypergraph on k vertices consisting of a red and a blue monotone path that are vertex disjoint except for the common end-vertices.

- There is exactly 2^{k-2} pairwise nonisomorphic k-gons.

The Peters-Szekeres Conjecture

The Peters-Szekeres Conjecture

- For $k \geq 2$, let $\widehat{\mathrm{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no k-gon.

The Peters-Szekeres Conjecture

- For $k \geq 2$, let $\widehat{\mathrm{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \widehat{\mathrm{ES}}(k) \leq\binom{ 2 k-4}{k-2}$.

The Peters-Szekeres Conjecture

- For $k \geq 2$, let $\widehat{\mathrm{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \widehat{\mathrm{ES}}(k) \leq\binom{ 2 k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathrm{ES}}(k)=2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

The Peters-Szekeres Conjecture

- For $k \geq 2$, let $\widehat{\mathrm{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \widehat{\mathrm{ES}}(k) \leq\binom{ 2 k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathrm{ES}}(k)=2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2, \widehat{\mathrm{ES}}(k)=2^{k-2}$.

The Peters-Szekeres Conjecture

- For $k \geq 2$, let $\widehat{\mathrm{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \widehat{\mathrm{ES}}(k) \leq\binom{ 2 k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathrm{ES}}(k)=2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2, \widehat{\mathrm{ES}}(k)=2^{k-2}$.

- As our main result we refute this conjecture.

The Peters-Szekeres Conjecture

- For $k \geq 2$, let $\widehat{\mathrm{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \widehat{\mathrm{ES}}(k) \leq\binom{ 2 k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathrm{ES}}(k)=2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2, \widehat{\mathrm{ES}}(k)=2^{k-2}$.

- As our main result we refute this conjecture.

Theorem

We have $\widehat{\mathrm{ES}}(7)>32$ and $\widehat{\mathrm{ES}}(8)>64$.

The Peters-Szekeres Conjecture

- For $k \geq 2$, let $\widehat{\mathrm{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \leq \widehat{\mathrm{ES}}(k) \leq\binom{ 2 k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathrm{ES}}(k)=2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \geq 2, \widehat{\mathrm{ES}}(k)=2^{k-2}$.

- As our main result we refute this conjecture.

Theorem

We have $\widehat{\mathrm{ES}}(7)>32$ and $\widehat{\mathrm{ES}}(8)>64$.

- We also tried to tackle the Erdős-Szekeres conjecture by restricting to special colorings of \mathcal{K}_{N}^{3}, but this conjecture remains open.

The Erdős-Szekeres Conjecture revisited

The Erdős-Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $\mathrm{N}(a, u)$.

The Erdős-Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $\mathrm{N}(a, u)$.
- For integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, let $N(a, u, k)$ be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

The Erdős-Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $\mathrm{N}(a, u)$.
- For integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, let $N(a, u, k)$ be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, we have

$$
\mathrm{N}(a, u, k)=\sum_{i=k-a+2}^{u} \mathrm{~N}(i, k+2-i)=\sum_{i=k-a+2}^{u}\binom{k-2}{i-2}
$$

The Erdős-Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $\mathrm{N}(a, u)$.
- For integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, let $\mathrm{N}(a, u, k)$ be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, we have

$$
\mathrm{N}(a, u, k)=\sum_{i=k-a+2}^{u} \mathrm{~N}(i, k+2-i)=\sum_{i=k-a+2}^{u}\binom{k-2}{i-2} .
$$

- This conjecture is equivalent with the Erdős-Szekeres conjecture.

The Erdős-Szekeres Conjecture revisited

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in $\mathrm{N}(a, u)$.
- For integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, let $\mathrm{N}(a, u, k)$ be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, we have

$$
\mathrm{N}(a, u, k)=\sum_{i=k-a+2}^{u} \mathrm{~N}(i, k+2-i)=\sum_{i=k-a+2}^{u}\binom{k-2}{i-2} .
$$

- This conjecture is equivalent with the Erdős-Szekeres conjecture.
- In particular, showing $N(a, u, k)>\sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for some a, u, k would refute the Erdős-Szekeres conjecture.

Bounds for $\mathrm{N}(a, u, k)$

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $\mathrm{N}(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $\mathrm{N}(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $\mathrm{N}(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $\mathrm{N}(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $\mathrm{N}(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $\mathrm{N}(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $\mathrm{N}(a, u, k)$ is $\mathrm{N}(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq\binom{ k}{2}-1$.

Bounds for $\mathrm{N}(a, u, k)$

- Erdős, Tuza, and Valtr showed $N(a, u, k) \geq \sum_{i=k-a+2}^{u}\binom{k-2}{i-2}$ for all a, u, k with $2 \leq a, u \leq k \leq a+u-2$.
- The best known upper bound for $N(a, u, k)$ is $N(a, u, k) \leq\binom{ a+u-4}{a-2}$ obtained from $\mathrm{N}(a, u, k) \leq \mathrm{N}(a, u)$.
- The conjecture is true for $k=a+u-2$ and $k=a+u-3$.

Proposition

For every integer $k \geq 3$, we have $N(4, k, k) \leq\binom{ k}{2}-1$.

The Peters-Szekeres conjecture revisited

The Peters-Szekeres conjecture revisited

- We find an analogous refinement for the Peters-Szekeres conjecture.

The Peters-Szekeres conjecture revisited

- We find an analogous refinement for the Peters-Szekeres conjecture.
- For integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, let $\widehat{N}(a, u, k)$ be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no red a-path, no blue u-path, and no k-gon.

The Peters-Szekeres conjecture revisited

- We find an analogous refinement for the Peters-Szekeres conjecture.
- For integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, let $\widehat{N}(a, u, k)$ be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no red a-path, no blue u-path, and no k-gon.

Lemma

The following statement is equivalent with the Peters-Szekeres conjecture. For all integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, we have

$$
\widehat{\mathrm{N}}(a, u, k)=\sum_{i=k-a+2}^{u} \widehat{\mathrm{~N}}(i, k+2-i)=\sum_{i=k-a+2}^{u}\binom{k-2}{i-2} .
$$

The Peters-Szekeres conjecture revisited

- We find an analogous refinement for the Peters-Szekeres conjecture.
- For integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, let $\widehat{N}(a, u, k)$ be the maximum number N such that there is a coloring of \mathcal{K}_{N}^{3} with no red a-path, no blue u-path, and no k-gon.

Lemma

The following statement is equivalent with the Peters-Szekeres conjecture. For all integers a, u, k with $2 \leq a, u \leq k \leq a+u-2$, we have

$$
\widehat{\mathrm{N}}(a, u, k)=\sum_{i=k-a+2}^{u} \widehat{\mathrm{~N}}(i, k+2-i)=\sum_{i=k-a+2}^{u}\binom{k-2}{i-2} .
$$

- This allows us to employ computer experiments for larger values of k.

The SAT attack

The SAT attack

- In our experiments we use the Glucose SAT solver.

The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^{3} with no red 4-path and no 7 -gon and proved $\widehat{\mathrm{N}}(4,7,7)=17$. By the lemma, we refute the Peters-Szekeres conjecture.

The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^{3} with no red 4-path and no 7 -gon and proved $\widehat{\mathrm{N}}(4,7,7)=17$. By the lemma, we refute the Peters-Szekeres conjecture.
- We also have $\widehat{N}(4,8,8) \geq 23$.

The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^{3} with no red 4-path and no 7 -gon and proved $\widehat{\mathrm{N}}(4,7,7)=17$. By the lemma, we refute the Peters-Szekeres conjecture.
- We also have $\widehat{\mathrm{N}}(4,8,8) \geq 23$.
- Further counterexamples:

$\widehat{\mathrm{N}}(a, u, 7)$	2	3	4	5	6	7
2					5	1
3					10	15
4				10	17	
5			10	20	$[26,35]$	$[27,56]$
6		5	15	$[26,35]$	$[31,70]$	$[32,126]$
7	1	6	17	$[27,56]$	$[32,126]$	$[33,210]$

The SAT attack

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^{3} with no red 4-path and no 7 -gon and proved $\widehat{\mathrm{N}}(4,7,7)=17$. By the lemma, we refute the Peters-Szekeres conjecture.
- We also have $\widehat{\mathrm{N}}(4,8,8) \geq 23$.
- Further counterexamples:

$\widehat{\mathrm{N}}(a, u, 7)$	2	3	4	5	6	7
2					5	1
3					10	15
4				10	17	
5			10	20	$[26,35]$	$[27,56]$
6		5	15	$[26,35]$	$[31,70]$	$[32,126]$
7	1	6	17	$[27,56]$	$[32,126]$	$[33,210]$

- For $k=6$, we verified the refined Peters-Szekeres conjecture in all cases, except $a=u=k$.

Pseudolinear colorings

Pseudolinear colorings

- To tackle the Erdős-Szekeres conjecture, we consider only special colorings of \mathcal{K}_{N}^{3}.

Pseudolinear colorings

- To tackle the Erdős-Szekeres conjecture, we consider only special colorings of \mathcal{K}_{N}^{3}.
- A coloring of K_{N}^{3} is pseudolinear if every 4-tuple of vertices of K_{N}^{3} induces a coloring that is an order type of a set of 4 points in the plane.

Pseudolinear colorings

- To tackle the Erdős-Szekeres conjecture, we consider only special colorings of \mathcal{K}_{N}^{3}.
- A coloring of K_{N}^{3} is pseudolinear if every 4-tuple of vertices of K_{N}^{3} induces a coloring that is an order type of a set of 4 points in the plane.

Pseudolinear colorings

- To tackle the Erdős-Szekeres conjecture, we consider only special colorings of \mathcal{K}_{N}^{3}.
- A coloring of K_{N}^{3} is pseudolinear if every 4-tuple of vertices of K_{N}^{3} induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997,Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)
There is a one-to-one correspondence between pseudolinear colorings of \mathcal{K}_{N}^{3} and signatures of x-monotone pseudolinear drawings of K_{N}.

Pseudolinear colorings

- To tackle the Erdős-Szekeres conjecture, we consider only special colorings of \mathcal{K}_{N}^{3}.
- A coloring of K_{N}^{3} is pseudolinear if every 4-tuple of vertices of K_{N}^{3} induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997,Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)

There is a one-to-one correspondence between pseudolinear colorings of \mathcal{K}_{N}^{3} and signatures of x-monotone pseudolinear drawings of K_{N}.

- For pseudolinear colorings, all our results matched the values from the refined Erdős-Szekeres conjecture.

Pseudolinear colorings

- To tackle the Erdős-Szekeres conjecture, we consider only special colorings of \mathcal{K}_{N}^{3}.
- A coloring of K_{N}^{3} is pseudolinear if every 4-tuple of vertices of K_{N}^{3} induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997,Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)
There is a one-to-one correspondence between pseudolinear colorings of \mathcal{K}_{N}^{3} and signatures of x-monotone pseudolinear drawings of K_{N}.

- For pseudolinear colorings, all our results matched the values from the refined Erdős-Szekeres conjecture.
- We verified the refined Erdős-Szekeres conjecture for some cases. We have $N(4,7,7)=16$ and $N(4,8,8)=22$.

Open problems

Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of \mathcal{K}_{N}^{3} with $N=2^{k-2}+1$ contains a k-gon?

Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of \mathcal{K}_{N}^{3} with $N=2^{k-2}+1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \geq 2$ the number $\mathrm{ES}(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_{N}^{3} with no k-gon.

Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of \mathcal{K}_{N}^{3} with $N=2^{k-2}+1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \geq 2$ the number $\mathrm{ES}(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_{N}^{3} with no k-gon.

- Is there some structure behind the found colorings?

Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of \mathcal{K}_{N}^{3} with $N=2^{k-2}+1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \geq 2$ the number $\mathrm{ES}(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_{N}^{3} with no k-gon.

- Is there some structure behind the found colorings?
- Is there a general construction of colorings of \mathcal{K}_{N}^{3} with no k-gon for arbitrarily large k and $N>2^{k-2}+1$.

Open problems

Problem (Peters and Szekeres, 2006)

For every $k \geq 2$, is it true that every pseudolinear coloring of \mathcal{K}_{N}^{3} with $N=2^{k-2}+1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \geq 2$ the number $\mathrm{ES}(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_{N}^{3} with no k-gon.

- Is there some structure behind the found colorings?
- Is there a general construction of colorings of \mathcal{K}_{N}^{3} with no k-gon for arbitrarily large k and $N>2^{k-2}+1$.

